
The Interactive API (iAPI)

Florian Daniel and Andrea Furlan

University of Trento, Via Sommarive 5, 38123, Trento, Italy
daniel@disi.unitn.it, andrea.furlan@studenti.unitn.it

Abstract. The claim of this paper is that reuse on the Web – if sen-
sibly facilitated – can be achieved in a much more intuitive and effi-
cient fashion than today. The idea is to invert the current perspective
on reuse by moving away from programmer-oriented artifacts, such as
APIs, web services and data feeds, and focusing on user-oriented arti-
facts, i.e., graphical user interfaces (UIs). The paper defines a new kind
of API, the interactive API (iAPI), which reconciles the intuitiveness
of interactive UIs with the power of programmable APIs and enables
(i) programmatic access to UIs and (ii) interactive, live programming.
The paper discusses use cases and implementation options and lays the
foundation for UI-oriented computing as a discipline.

1 Introduction

On the Web, data is typically shared via XML dialects like RSS [9] or Atom
[8] feeds, plain XML, web services or, more recently, via so-called micro-formats
(http://microformats.org), which enable the extraction of structured data
from web pages via HTML annotations. If data are not explicitly made acces-
sible, data extraction tools like Dapper (http://open.dapper.net) allow one
to extract structured data from websites even without annotations. Application
logic is mostly accessed via web services (both SOAP services [2] and RESTful
services [4]) or code libraries (e.g., in JavaScript). The reuse of user interfaces
(UIs) is only scarcely supported so far. Web mashups [11] are the most prominent
example of integration at the presentation layer.W3C widgets [10] are a standard
client-side technology, Java portlets [1] a standard server-side UI technology for
simple, stand-alone applications that can be assembled into a composite page.
However, mashup tools typically still rely on proprietary UI component technolo-
gies [12] and, like portlets and widgets, feature only the reuse of coarse-grained,
programmer-oriented components.

The promise of the service composition (e.g., BPEL [5]) and mashup ap-
proaches [11] was that they would enable generic people to develop. Yet, if we
take a critical look at how composite applications and services are developed
today we recognize that development is still a prerogative of programmers. Mas-
tering all the above technologies implies a learning process that is tedious and
time-consuming even to expert programmers, let alone non-programmers.
All the attempts to enable non-programmers failed, as they insisted on abstract-
ing APIs or services that were invented for programmers. Non-programmers

Q.Z. Sheng and J. Kjeldskov (Eds.): ICWE 2013 Workshops, LNCS 8295, pp. 3–15, 2013.
c© Springer International Publishing Switzerland 2013

http://microformats.org
http://open.dapper.net

4 F. Daniel and A. Furlan

simply don’t know what services or data formats are [7]. What they know is how
to use a user interface.

The observation of this paper is that there is however a variety of applications
on the Web, whose development could be significantly sped up to programmers
and enabled to non-programmers, if only we had the right component technology
in place. The types of applications we have in mind are non-mission-critical
applications, such as:

– Simple application integrations, which require interoperability among web
applications;

– UI-centric web mashups, which require sourcing and combing data, applica-
tion logic and/or UIs from the Web;

– Website evolutions, which require restructuring or extending existing web-
sites;

– Simple web automations, which require batch processing of repetitive on-line
tasks (beyond http://ifttt.com); and

– Personal web processes, which require support for long-lasting on-line tasks
that also involve user interactions.

The practices underlying these applications are sourcing or extracting data
from websites, processing data and accessing remote application logic, copying
and pasting pieces of UIs from existing websites, and similar – all tasks that are
relatively common on the Web. None of these practices, however, is currently sup-
ported by a single component technology and in the reach of non-programmers.

A simple, but good example of how reuse could be is the following scenario :
Imagine a researcher wants to re-structure her website, reusing the list of publi-
cations of her old website and adding citation counts from Google Scholar. She
would like to focus only on the design of the new layout of her publications and
to be able to simply drag and drop the content of her old table of publications to
the new layout. Next, she would like to be able to tell her new website to query
Google Scholar for each of the publications in the table, e.g., by recording a set
of actions that she exemplarily performs manually and that her website could
replay for each publication – ideally, everything without writing any new line of
code.

As the scenario shows, the aim of this work is to turn UIs into first-class
programming artifacts. To this aim, the paper specifically provides the following
contributions:

– The design of a new type of API, the interactive API (iAPI), which enables
(i) programmatic access to UIs and (ii) interactive programming;

– The discussion of the core iAPI uses cases and implementation options ;
– The proposal of a simple iAPI annotation format and runtime middleware;
– The proposal of UI-oriented computing as a discipline of component-based

development for non-programmers based on iAPIs.

Next, we define the context of this work, i.e., web user interfaces. Then, we
introduce iAPIs and describe their use cases and a possible implementation. We
then outline the benefits of iAPIs and the challenges of UI-oriented computing.

http://ifttt.com

The Interactive API (iAPI) 5

Publications

News

Photo

Paper title
Authors
Reference

Abstract

5

1

4

2
3

6

DetailOrder

...

Reference

Home page (ascending order)

Publication details

Download

Publications

News

Photo

...

25

29

26

28
27

24

DetailOrder

23

Reference

Home page (descending order)

tables
 c1, c2

link c3image c0

click action a1
(change order)

control button c4

start state S0

state S1

state S2

state transition
act

navigation
action a2

construct c2 with states s2,1 and s2,2

text paragraph c5

Fig. 1. UI constructs, states, actions and state transitions in web UIs

2 Preliminaries: Web User Interfaces

Figure 1 provides a schematic example of a graphical web user interface made
of two pages (Home and Publication details) and a set of UI constructs (tables,
images, buttons, links, text, etc.). The figure apparently shows three pages, but
attention: the Home page is shown twice. From a UI point of view it can be in
two different states, depending on the order of the publications (ascending vs.
descending). State is an important aspect of UIs, as in each instant of time a
user can perform only those actions that are supported by the UI constructs
available at that time (e.g., if the publications are in ascending order, he can
only ask for the descending order).

Adapting traditional human-computer interaction and system models [3] to
the Web, a graphical web user interface can be seen conceptually as an ex-
tended finite state machine of the form ui = 〈C, S, S0, A, act〉, where:
– C = {ci} is the set of all UI constructs of the UI;
– S = {Sj|Sj = {si,j}} is the set of states the UI may traverse in response to

user interactions, with si,j being the state of the i-th UI construct in state
j (e.g., hidden);

– S0 is the start state of the UI;
– A = {click, type, drag, drop, ...} is the set of typical actions a user can per-

form on web UIs; and
– act : C×S×A → S is the transition function that tells how the UI transitions

from one state to another in response to an action a ∈ A on a construct c ∈ C.

6 F. Daniel and A. Furlan

The peculiarity of this model is that states are not atomic but aggregations of
states of UI constructs, i.e., Sj = {si,j}. That is, a state change may correspond
to the contextual change of the state of multiple UI constructs. For instance, a
user navigation typically affects multiple UI constructs contemporarily, e.g., it
may create a new table of data, load new images, display new heading and text,
expose new interactive controls, etc.

The model does not prescribe any specific level of granularity regarding the
set of constructs C, which means that a given c ∈ C can be a full table, just as it
can be an individual cell of the table or a sub-element of the text inside the cell.
The best level of detail is the one that captures those aspects of the dynamics
of a UI that are of interest, and nothing more.

This model of UIs is conceptual and aims to understand how to turn UIs
into programming artifacts. In practice, Web UIs are rendered out of HTML
markup, UI state is managed by the browser via the DOM (Document Object
Model), and state transitions correspond to changes to the DOM, e.g., due to
programmatic modifications or user navigations (yielding a new DOM) – every-
thing managed by the web browser “for free.” The aim of the model is to provide
an interpretation of this low-level HTML/DOM model oriented toward the users
of the UI, to equip it with user-oriented semantics, and to understand what it
actually means to enable users to manipulate UIs instead of syntax elements.

3 The Interactive API (iAPI)

The problem with web UIs is that they do not have enough machine-processable
meaning, which could be used to enable their interactive manipulation and pro-
gramming. HTML constructs like <table> or are only syntactical
markup. Constructs of more advanced UI markup languages, such as
XUL (https://developer.mozilla.org/en/docs/XUL) or XAML
(http://msdn.microsoft.com/en-us/library/ms752059.aspx), only format
and arrange UI elements.

There are two key ingredients that UIs currently miss: once rendered, they
cannot be programmed in a principled fashion (of course, it is always possible to
hack into the UI markup and inject JavaScript code or extract data, but this is
neither good practice nor does it produce good results in general) and it is not
possible to use them as design constructs while already rendered in the browser.

What is needed is graphically illustrated in Figure 2, which focuses on the
table of publications of Figure 1: the table’s UI must be complemented with a
dedicated API, which provides programmatic access to the table, and with a
set of graphical controls, which allow the user to operate the API interactively
and, thereby, to program the table. Depending on the purpose of the specific UI
construct or set thereof, the API’s capability can be more or less complex. For
instance, the API in Figure 2 allows one to emulate user actions on the table
(do), to extract the visible data, to source the full data underlying the table or
to clone the table along with its data. In the case of a form, the API will provide
for the processing of data in input and produce results in output; the API may

https://developer.mozilla.org/en/docs/XUL
http://msdn.microsoft.com/en-us/library/ms752059.aspx

The Interactive API (iAPI) 7

API
do()
getVisibleData()
getFullData()
cloneTable()

Publications

5

1

4

2

3

6

DetailOrder

...

Reference

Publications
Get visible data
Get full data
Clone table

user interface ui
(rendered as integral
part of the UI of the
hosting application)

application programming
interface api (not visible)

graphical
controls Ctr

injected into ui
(e.g., shown

only on mouse-
over or upon
user request)

iapi = ⟨ui, api, Ctr⟩

Fig. 2. The model of interactive APIs exemplified with a possible rendering

also communicate user interactions via suitable events, and so on. We call the
artifact that brings these aspects under one hood an interactive API.

3.1 iAPI Model

An interactive API (iAPI) is a piece of graphical user interface (a sub-
tree of the DOM), e.g., a table, form or sub-area of a web page, that provides
both interactive and programmatic access to its UI constructs, application logic
and/or data. That is, to the common user an iAPI is a visual What-You-See-
Is-What-You-Get (WYSIWYG) artifact that can be manipulated via dedicated,
artifact-specific graphical controls (see Figure 2), which may also mediate be-
tween the user and possible back-end logics (e.g., exposed via web services). To
the developer, an iAPI in addition also exposes a programmable API, e.g., in
JavaScript, which enables programmatic access.

Conceptually, an iAPI can be modeled as a tuple iapi = 〈ui, api, Ctr〉, where:

– ui = 〈C, S, S0, A, act〉 is a UI as defined previously, but limited to the UI
constructs of interest to the iAPI;

– api = 〈do,O,E〉 is the API of the iAPI, with

• do : C × A →⊥ being an operation that allows one to emulate user
actions a ∈ A on ui;

• O being a set of operations providing iAPI-specific functionality; opera-
tions may act locally only (e.g., getVisibleData), or they may invoke
remote application logic (e.g., getFullData); and

• E being a set of events emitted by the iAPI (e.g., in reaction to a navi-
gation action);

– Ctr is the set of graphical controls injected into ui to make the features of
api accessible interactively.

8 F. Daniel and A. Furlan

iAPIs therefore provide programmatic access to both the Surface Web (the
graphical UIs) and the Deep Web (the data and logic behind the UIs). The graph-
ical controls injected into the UI bridge between the Deep Web and the Surface
Web and make programming interactive. Depending on the level of support an
iAPI provides to developers, we distinguish three types of iAPIs:

– Basic iAPIs only provide programmatic access limited to the same features
a user can perform manually on the UI of the iAPI. That is, iapibase =
〈ui, 〈do, ∅, ∅〉, ∅〉.

– Intermediate iAPIs also provide advanced, iAPI-specific operationsandevents,
but still programmatically only. That is, iapiint = 〈ui, 〈do,O,E〉, ∅〉, with
O,E �= ∅.

– Full iAPIs provide for interactive programming and enable live, UI-oriented
reuse. That is, iapifull = 〈ui, 〈do,O,E〉, Ctr〉, with O,E,Ctr �= ∅.

Which kind of iAPI suits best a given reusable application feature depends
on the interpretation of the iAPI developer as well as its expected target user.
For instance, if the target users are developers, there is no need for graphical
controls to manipulate the iAPI; however, if the target users are common web
users, graphical controls become mandatory.

Like the model of UIs, also the iAPI model does not prescribe any level of
granularity. An iAPI may cover a full web page, just like it may be defined only
for the table of publications as exemplified in Figure 2. A web page may contain
multiple independent iAPIs. It is the developer of the website who decides which
features of the site to make accessible for UI-oriented reuse and how. A sensible
design will focus on conceptually self-contained features, comprising own UI
constructs (e.g., a table or form), application logic and/or data.

3.2 iAPI Use Cases

In order to appreciate the power of this UI-centric perspective on reuse, it is
important to understand which new, functional features iAPIs are able to provide
to developers. Figure 3 distinguishes four core iAPI use cases :

(a) Operating UI : The basic use case is programmatically interacting with a
UI, i.e., operating it by emulating user interactions, without further reusing
any of its features. The use case leverages on the do function, which could
be programmed by recording and re-playing user interactions.

(b) Extracting data : The second use case is extracting data from a UI (e.g.,
from a table), in order to reuse them inside another piece of software, using
own, new UI constructs for the rendering of the data. The use case makes
use of data extraction operations in O, whose graphical control could, e.g.,
simply be dragged/dropped over a new table.

(c) Extracting logic: The more advanced use case is extracting application
logic from an iAPI, e.g., by processing data via a form and extracting the
output from the form’s response page or by invoking a remote web service.
The use case uses the do function to automate form processing as well as
the operations and events in O and E.

The Interactive API (iAPI) 9

Data

Logic

UI

Logic

Data

UI

Data

UI

Logic

(b) Extracting data (c) Extracting logic

Data

Logic

UI

(a) Operating UI (d) Cloning UI

Fig. 3. The four core uses cases of iAPIs for UI-oriented computing. White blocks
correspond to what is reused, gray blocks are neglected.

(d) Cloning UI : The most advanced use case is cloning a complete piece of
UI, along with its underlying application logic and data. This means re-
constructing the UI of the iAPI locally and connecting them to the remote
iAPI’s logic and data. The use case copies ui and makes use of all other
features, e.g., by dragging/dropping the piece of UI into a new web page.

These four use cases represent a unified and principled solution to the devel-
opment practices described in the introduction, which otherwise would require
mastering a wide set of different component technologies and protocols.

3.3 Implementation Options

Although iAPIs are apparently complex software artifacts themselves, their im-
plementation can be kept relatively simple. Recalling the structure of iAPIs, i.e.,
iapi = 〈ui, api, Ctr〉 with api = 〈do,O,E〉, it is important to note that the ui
comes essentially for free, in that it is simply a part of a web application’s UI,
which would be there anyway, with or without the iAPI. Similarly, the function
do can be provided once for all via a dedicated UI wrapper that enables emu-
lating user interactions with ui (similar to Selenium, http://seleniumhq.org,
but with advanced iAPI support). Only the operations O and the events E re-
quire an iAPI-specific implementation, while the graphical controls Ctr can be
automatically generated out of their definitions, given a respective rendering
convention. As for the operations and events, we identify three options:

– Ad hoc implementation : It is always possible to implement dedicated
operations and events via custom JavaScript code included in web pages.
Each iAPI would have its own implementation.

– iAPI annotations: If we carefully examined how these implementations
look like, we would easily identify recurrent patterns for data extraction
from HTML markup, fetching data from a remote source, or invoking remote
web services. Instead of implementing these functionalities imperatively in
JavaScript, it is possible to factor out the repetitive code into an independent
code library and to configure it via declarative annotations of the HTML
markup of ui. For instance, data extraction can be supported via micro-
formats, while logic extraction may require new annotation elements.

http://seleniumhq.org

10 F. Daniel and A. Furlan

– iAPI-ready markup : Instead of annotating HTML, iAPIs could become
an integral part of the HTML standard itself, with own elements to equip UIs
natively with interactive programming capabilities and integrated browser
support for the rendering of their graphical controls. The idea is similar to
the <header> and <navigation> elements of HTML 5, whose only purpose
is to add semantics to the markup and not to actually format content.

Independently of their implementation, the intriguing aspect from a software
engineering point of view is that an iAPI’s api does not exist as independent soft-
ware artifact. It cannot live without its UI. Both must be instantiated together,
and the API’s life cycle is tightly coupled to that of its UI counterpart.

This implies some requirements for the construction of new software artifacts
(e.g., a web page) out of a set of iAPIs. Specifically, integrating multiple iAPIs
requires (i) instantiating the source web pages, (ii) instantiating their iAPIs and
(iii) setting up a communication channel among them. The instantiation of the
web pages may occur directly inside the web browser or outside in a GUI-less
rendering engine, such as HtmlUnit (http://htmlunit.sourceforge.net). The
instantiation of the iAPIs requires an extension of current rendering engines
(e.g., a JavaScript parser and iAPI runtime container). Communications can
be set up via interactions among conventional APIs (browser-internal) or web
services/sockets (inter-browser) provided by the extensions.

4 A First Implementation

4.1 iAPI Micro-format

The idea to enable the specification of iAPIs is to follow an approach that is
similar to that of micro-formats (http://microformats.org), with one key dif-
ference: while micro-formats provide ready annotations for data types of indi-
vidual domains (e.g., hCard describes people and organizations, and hCalendar
describes events), the iAPI annotation format provides a set of instructions (i)
for the free description of data types of own domains, (ii) for the reuse of existing
micro-formats, and (iii) for the reuse of web services or data feeds.

In line with micro-formats, also the iAPI annotation format uses the class

attribute of HTML to host its annotations (an example follows). Table 1 sum-
marizes the minimum set of instructions identified so far for the reuse of data.

Table 1. Basic iAPI annotations elements

Instruction Parameter Description

iapi – Identifies an iAPI inside HTML
datafeed Feed name Defines an iAPI for data extraction
dataitem Item name Identifies individual data items
dataattribute Attribute name Identifies individual attributes of an item
rss URL References an equivalent RSS data source
source URL References a web resource for iAPI reuse
iapiid ID Identifies an iAPI to be reused inside a source

http://htmlunit.sourceforge.net
http://microformats.org

The Interactive API (iAPI) 11

Given these instructions, a web page that wants to make its data available in
the form of an iAPI can be annotated as follows (we call this the source page):

<ul id="1" class="iapi datafeed:Publications rss:RSS_URL">
<li class="dataitem:Publication">

F. Daniel and A. Furlan.
The Interactive API (iAPI).
ComposableWeb 2013

...

The annotation identifies the unnumbered list as iAPI (iapi), enables the
extraction of data (datafeed) structured into dataitem-s and dataattribute-
s, specifically of publications with authors, titles, and events. The URL of the
rss instruction provides an alternative resource where to fetch the same data
from.

If a developer wants to reuse the data exposed by this iAPI (inside a target
page), he only needs to specify the following line, whose annotation identifies
the table as iAPI and tells where to fetch the respective data from (the effect of
the interpretation of this annotation format is illustrated in Figure 5):

<table class="iapi source:SourceURL iapiid:1"></table>

As for now, the annotation format proposes only a set of instructions for the
specification of data extraction use cases, both from the iAPI’s HTML markup
as well as from RSS data sources. To limit the annotation effort as much as
possible and to foster reuse, inside an iapi element it is further possible to
use common micro-formats to annotate data, such as the hCard and hCalendar
formats described earlier. The next step will be the design of instructions for the
specification of the other iAPI use cases.

4.2 iAPI Middleware

In order to use iAPIs in practice and to enable interactive development, it is
necessary to provide for suitable interpreters and runtime environments, i.e., for
an iAPI middleware. In Figure 4 we illustrate the architecture of an accord-
ing Chrome browser extension we developed to support the previous annotation
example, which acts as middleware. The extension is based on a so-called back-
ground page for the overall management of the extension and a content script
for the interaction with the DOM of the page loaded in the browser window.
When loading a page, the iAPI parser identifies possible iAPIs in the page, and
the HTML augmenter injects the respective graphical controls. If the identified
iAPI reuses data from another source, the HTML augmenter loads (via the loader
module) the source page, extracts the annotated data, reformats it according to
the host HTML element of the target page (e.g., the Content formatter turns
the unnumbered list into a table), and augments the target page with the newly
formatted data. Other parsers support fetching data from different data sources,
such as RSS feeds or micro-formats. This is enough to execute the annotations
of the source and target pages described above.

12 F. Daniel and A. Furlan

With the help of the Drag&Drop handler, the extension is also able to in-
tercept drag-and-drop events among browser windows and to allow generic web
users without programming knowledge to drag iAPIs (via the injected graphical
controls) from one page to another. This enables the extension to automatically
generate the annotation of a target iAPI with information of the source iAPI
and to realize the interactive, UI-driven development scenario depicted in Figure
5. Ideally (but this is not implemented yet), the extension would then store the
so defined reuse logic either locally or remotely, so as to be able to re-run it as
soon as the user returns to the same target page.

5 Benefits and Research Challenges

The aim of this paper is to reconcile the twofold requirement of speeding up
development to programmers and of enabling non-programmers to develop. The
result are interactive APIs (iAPIs). The approach leverages on the front-end
of applications, instead of on their back-end, and proposes a visual, interactive
reuse paradigm. Incidentally, these design choices come with some unexpected
but highly beneficial side-effects:

– The deployment of iAPIs is contextual to the deployment of their host appli-
cation. iAPIs are an integral part of an application’s UI and do not require
separate deployment or maintenance. They are natively aligned and consis-
tent with their applications. This is different from web services, which are
deployed independently and easily diverge from their applications.

– The documentation of iAPIs comes for free to their developers. There is no
need for abstract descriptors, IDLs or textual API descriptions. The UI of
the page hosting the iAPIs and the graphical controls injected into it already
tell everything about the capabilities of the iAPIs contained in the page.

The Web

Source page P1

iAPI

Browser window

background.html

Target page P2

contentscript.js

<ul
class=
"iapi">
…

<table class="iapi
source:P1">
…
</table>

Browser extension logo

Graphical iAPI controlsiAPI annotation

iAPI annotation

Annotation parsers

iAPI parser

RSS parser

cCard parser

HTML
augmenter

Content
formatter

Loader

HTML 5 message
exchanges

loads

interprets

injects

Drag&Drop
handler

reacts to
events of

Fig. 4. Architecture of the iAPI middleware Chrome extension

The Interactive API (iAPI) 13

Source page with iAPI
annotation and graphical
controls for data extraction

Empty target page
with iAPI ready to
host external data

Target page with iAPI
automatically filled with content

Automatically synchronized by
iAPI middleware

Drag-and-drop data extraction

Data formatting and rendering

Source iAPI

Empty target iAPI
Filled target iAPIFilled targeg t iAPI

Fig. 5. The concept of interactive, UI-oriented development explained with an example
(a video of the flow is available on-line via http://goo.gl/bAzS2)

– The retrieval of iAPIs does not ask for new infrastructure or query paradigms.
Being iAPIs an integral part of the Surface Web, it is enough to query for
a desired functionality via common web search. If a suitable iAPI exists, its
web page will pop up under the search results. Again, this is different from
web services, whose registry infrastructure (UDDI) is a well-known failure.

– Finally, understanding the logic of an iAPI does not require programming
skills or computer science knowledge. Common web browsing skills are enough
to understand the available features and how to operate them.

These properties make iAPIs a technology that is intrinsically Web-ready and
that has the potential to boost reuse on the Web. Yet, in order for this to happen,
a set of research and engineering challenges ask for suitable answers:

– iAPI development : It is crucial to sensibly conceive how iAPIs are developed,
in order to keep their development sustainable. An interpretable annotation
format (as exemplified in Section 4) or markup language seems promising,
but this is not the only option.

http://goo.gl/bAzS2

14 F. Daniel and A. Furlan

– iAPI extraction: In order to create a critical mass of iAPIs, it may be neces-
sary to “extract” iAPIs from existing web applications, similar to web data
extraction, e.g., by externally annotating third-party web applications.

– UI-oriented computing infrastructure: It is necessary to complement iAPIs
with suitable UI-oriented middleware, runtime environments, communica-
tion protocols, browser extensions, and similar.

– Interactive, live programming: It is an HCI challenge to design an effective
UI-oriented programming paradigm for non-programmers.

In summary, iAPIs aim to set the agenda for a new line of research, i.e., UI-
oriented computing , which brings together SE/WE and HCI in a completely
new fashion. Compared to micro-formats or Semantic Web approaches, the bet
of iAPIs is that turning UIs into programming artifacts will also lead to support
from developers and content providers. The idea to do so is to equip UIs with
semantics (via annotations), which do not only identify reusable UI elements
inside an page, but also tell how to reuse them. This is fundamentally differ-
ent from the approach, for example, described in [6], where the authors study
how to reverse-engineer Java-based UIs from Java code by monitoring UI us-
age via aspect-oriented extensions of the source code of applications, in essence
demonstrating that there is a lack of semantics and support for reuse of UIs.

The implementation described in this paper is as proof of concept and a
starting point for future development. Concretely, via the W3C Interactive APIs
Community Group (http://www.w3.org/community/interative-apis) we aim
to develop a full-fledged iAPI annotation format with the help of the commu-
nity (participation is open and free). On http://www.interactive-apis.org

we would like to host the open-source projects for iAPI middleware.

References

1. Abdelnur, A., Hepper, S.: Java Portlet Specification, Version 1.0. Technical Report
JSR 168, Sun Microsystems, Inc. (October 2003),
http://download.oracle.com/otndocs/jcp/PORTLET_1.0-FR-SPEC-G-F/

2. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Archi-
tectures, and Applications. Springer (2003)

3. Dix, A., Finlay, J., Abowd, G., Beale, R.: Human-Computer Interaction, 3rd edn.
Prentice Hall (2004)

4. Fielding, R.: Architectural Styles and the Design of Network-based Software Ar-
chitectures. Ph.d. dissertation, University of California, Irvine (2007)

5. Jordan, D., Evdemon, J.: Web Services Business Process Execution Language Ver-
sion 2.0. Oasis standard, OASIS (April 2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

6. Li, P., Wohlstadter, E.: View-based maintenance of graphical user interfaces. In:
AOSD, pp. 156–167 (2008)

7. Namoun, A., Nestler, T., Angeli, A.D.: Service Composition for Non-programmers:
Prospects, Problems, and Design Recommendations. In: ECOWS, pp. 123–130
(2010)

http://www.w3.org/community/interative-apis
http://www.interactive-apis.org
http://download.oracle.com/otndocs/jcp/PORTLET_1.0-FR-SPEC-G-F/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

The Interactive API (iAPI) 15

8. Nottingham, M., Sayre, R.: The Atom Syndication Format (December 2005),
http://www.ietf.org/rfc/rfc4287.txt

9. RSS Advisory Board. RSS 2.0 Specification (2009),
http://www.rssboard.org/rss-specification

10. Web Application Working Group. Widgets Family of Specifications (May 2012)
11. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development.

IEEE Internet Computing 12(5), 44–52 (2008)
12. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A Frame-

work for Rapid Integration of Presentation Components. In: WWW, pp. 923–932.
ACM Press (May 2007)

http://www.ietf.org/rfc/rfc4287.txt
http://www.rssboard.org/rss-specification

	The Interactive API (iAPI)
	Introduction
	Preliminaries: Web User Interfaces
	The Interactive API (iAPI)
	iAPI Model
	iAPI Use Cases
	Implementation Options

	A First Implementation
	iAPI Micro-format
	iAPI Middleware

	Benefits and Research Challenges

