
REST APIs: A Large-Scale Analysis of

Compliance with Principles and Best Practices

Carlos Rodŕıguez1, Marcos Baez1, Florian Daniel2, Fabio Casati1, Juan Carlos
Trabucco3, Luigi Canali3 and Gianra↵aele Percannella3

1 University of Trento, Povo (TN), Italy
{crodriguez,baez,casati}@disi.unitn.it

2 Politecnico di Milano, Milan, Italy
florian.daniel@polimi.it

3 Telecom Italia, Trento, Italy
{gianraffaele.percannella,juancarlos.trabucco,luigi.canali}@telecomitalia.it

Abstract. Quickly and dominantly, REST APIs have spread over the
Web and percolated into modern software development practice, espe-
cially in the Mobile Internet where they conveniently enable o✏oading
data and computations onto cloud services. We analyze more than 78GB
of HTTP tra�c collected by Italy’s biggest Mobile Internet provider over
one full day and study how big the trend is in practice, how it changed
the tra�c that is generated by applications, and how REST APIs are im-
plemented in practice. The analysis provides insight into the compliance
of state-of-the-art APIs with theoretical Web engineering principles and
guidelines, knowledge that a↵ects how applications should be developed
to be scalable and robust. The perspective is that of the Mobile Internet.

Keywords: REST, APIs, REST Principles, Mobile Internet

1 Introduction

By now, Web applications leveraging on remote APIs or services, service-oriented
applications or service compositions [21], mashups [5], mobile applications built
on top of cloud services and similar web technologies are state of the art. They
all have in common the heavy use of functionality, application logic and/or data
sourced from the own backend or third parties via Web services or APIs that
provide added value and are accessible worldwide with only little development
e↵ort. The continuous and sustained growth of ProgrammableWeb’s API direc-
tory (http://www.programmableweb.com/apis/directory) is only the most
immediate evidence of the success that Web services and APIs have had and
are having among developers. On the one hand, today it is hard to imagine a
Web application or a mobile app that does not leverage on some kind of remote
resource, be it a Google Map or some application-specific, proprietary function-
ality. On the other hand, to some companies today service/API calls represent
the equivalent of page visits in terms of business value.

Two core types of remote programming resources have emerged over the
years: SOAP/WSDL Web services [21] and REST APIs [6]. While the former



2

can rely on a very rich set of standards and reference specifications, and devel-
opers know well how to use WSDL [4] to describe a service and SOAP [3] to
exchange messages with clients, REST APIs do not have experienced this kind
of standardization (we specifically refer to JSON/XML APIs for software agents
and exclude web apps for human actors). Indeed, REST is an architectural style
and a guideline of how to use HTTP [7] for the development of highly scalable
and robust APIs. While the freedom left by this choice is one of the reasons for
the fast uptake of REST, it is also a reasons why everybody interprets REST in
an own way and follows guidelines and best practices only partially, if at all.

It goes without saying that even small di↵erences in the interpretation of the
principles and guidelines underlying REST APIs can turn into a tedious and
intricate puzzle to the developer that has to integrate multiple APIs that each
work di↵erently, although expected to behave similarly. For instance, while one
provider may accompany an own API with a suitable WADL [10] description,
another provider may instead not provide any description at all and require
interested clients to navigate through and explore autonomously the resources
managed by the API. Of course, if instead all APIs consistently followed the same
principles and guidelines, this would result in design features (e.g., decoupling,
reusability, tolerance to evolution) that would directly translate into savings in
development and maintainance costs and time [18, 23].

With this paper, we provide up-to-date insight into how well or bad the prin-
ciples and guidelines of the REST architectural style are followed by looking at
the problem from the mobile perspective. We thus take an original point of view:
we analyze more than 78GB of plain HTTP tra�c collected by Italy’s biggest
Mobile Internet (MI) provider, Telecom Italia, identify which of the individual
HTTP calls are targeted at REST APIs, and characterize the usage patterns
that emerge from the logged data so as to compare them with guidelines and
principles. We further use the maturity model by Richardson [8], which o↵ers
an interesting way to look at REST in increasing levels of architectural gains, to
distinguish di↵erent levels of compliance with the principles. The dataset we can
rely on allows us, at the same time, to look at how conventional Web applica-
tions leverage on REST APIs as well as to bring in some insights regarding the
use of APIs in the Mobile Internet. Concretely, the contributions of this paper
are as follows:

– We descriptively characterize a dataset of more than 78GB of HTTP requests
corresponding to one full day of Mobile Internet tra�c generated by almost
1 million subscribers.

– From the core principles and guidelines of REST and the structure of the
dataset, we derive a set of heuristics and metrics that allow us to quantita-
tively describe the API ecosystem that emerges from the data.

– We analyze the results, study how well the data backs the principles and
guidelines of REST, and discuss how the respective findings may impact
API maintainability and development.

The paper is structured in line with these contributions. We first recap the
theoretical principles and guidelines that we want to study in this paper (Section



3

2). Next, we introduce the dataset we analyzed and how we collected it (Section
3) and discuss its key features (Section 4). Then, we specifically focus on the
REST APIs (Section 5) and conclude the paper with an overview of related
works and our final considerations on the findings (Sections 6 and 7).

2 REST APIs

The Representational State Transfer (REST) architectural style [6] defines a set
of rules for the design of distributed hypermedia systems that have guided the
design and development of the Web as we know it. Web services following the
REST architectural style are referred to as RESTful Web services, and the pro-
grammatic interfaces of these services as REST APIs. The principles governing
the design of REST APIs are in big part the result of architectural choices of
the Web aimed at fostering scalability and robustness of networked, resource-
oriented systems based on HTTP [7]. The core principles are [6, 23]:

– Resource addressability. APIs manage and expose resources representing do-
main concepts; each resource is uniquely identified and addressable by a
suitable Uniform Resource Identifier (URI).

– Resource representations. Clients do not directly know the internal format
and state of resources; they work with resource representations (e.g., JSON
or XML) that represent the current or intended state of a resource. The
declaration of content-types in the headers of HTTP messages enables clients
and servers to properly process representations.

– Uniform interface. Resources are accessed and manipulated using the stan-
dard methods defined by the HTTP protocol (Get, Post, Put, etc.). Each
method has its own expected, standard behavior and standard status codes.

– Statelessness. Interactions between a client and an API are stateless, meaning
that each request contains all the necessary information to be processed by
the API; no interaction state is kept on the server.

– Hypermedia as the engine of state. Resources as domain concepts can be re-
lated to other resources. Links between resources (included in their represen-
tations) allow clients to discover and navigate relationships and to maintain
interaction state.

Together, these principles explain the name “representational state transfer”:
interaction state is not stored on the server side; it is carried (transferred) by
each request from the client to the server and encoded inside the representation
of the resource the request refers to.

2.1 Best practices for development

Along with the general principles introduced above, a set of implementation best
practices have emerged to guide the design of quality APIs [23, 16, 19, 22]. These
best practices address the main design aspects in REST APIs: (i) the modeling



4

of resources, (ii) the identification of resources and the design of resource identi-
fiers (URIs), (iii) the representation of resources, (iv) the definition of (HTTP)
operations on resources, and (v) the interlinking of resources. We overview these
best practices in the following; a summary with examples is shown in Table 1.

Resource modeling. REST APIs can manage di↵erent types of resources: doc-
uments for single instances of resources, collections for groups of resources,
and controllers for actions that cannot logically be mapped to the standard
HTTP methods [16]. While modeling resources for REST APIs is not fun-
damentally di↵erent from modeling classes in OO programming or entities in
data modeling, there are a couple of recommended naming practices that are
typical of REST APIs: singular nouns for documents, plural nouns for collec-
tions, and verbs only for controllers [16], no CRUD names in URLs [16, 22],
no transparency of server-side implementation technologies (e.g., PHP, JSP)
(http://www.ibm.com/developerworks/library/ws-restful/).

Resource identification. Resource identifiers should conform with the URI for-
mat, consisting of a scheme, authority, path, query, and fragment [2]. In the
case of Web-accessible REST APIs, the URIs are typically URLs (Uniform Re-
source Locators) that tell clients how to locate the APIs. In order to improve the
readability of URLs, it is recommended to use hyphens instead of underscores,
lowercase letters in paths, “api” as part of the domain, and avoid the trailing
forward slash [16]. In addition, in its purest form, REST services should avoid
declaring API versions in the URL [16].

Resource representation. Resources can support alternative representations (e.g.,
XML, JSON) and serve di↵erent clients with di↵erent formats. Which represen-
tation to serve should be negotiated at runtime, with the client expressing its
desired representation using the HTTP Accept header instruction. This fosters
reusability, interoperability and loose-coupling [22]. APIs should therefore use
content negotiation instead of file extensions to specify formats (e.g., .json or
.xml). In addition, it is recommended that APIs support (valid) JSON among
their representation alternatives [16, 22].

Operations. To manage resources, REST APIs should rely on the uniform set
of operations (Post, Get, Put, Delete, Options, Head) defined by the HTTP
standard [7] and comply with their standardized semantics:

– Post should be used to create new resources within a collection.
– Get should be used to retrieve a representation of a resource.
– Put should be used to update or create resources.
– Delete should be used to remove a resource from its parent.
– Options should be used to retrieve the available interactions of a resource.
– Head should be used to retrieve metadata of the current state of a resource.

REST APIs should thus never tunnel requests through Get or Post, e.g., by
specifying the actual operation as a parameter or as part of the resource name.



5

Resource modeling
Singular noun for documents, plural noun for collections, verb for controllers, avoid CRUD names
in URIs, and hide technology:
4 http://api.test.org/universities
6 http://api.test.org/university/deleteCenter?id=1

Resource identification
Use hyphens instead of underscores, lowercase letters in paths, and avoid the trailing forward slash:
4 http://api.test.org/universities/12/faculty-centers?page=1
6 http://api.test.org/universities/12/Faculty_centers/

Resource representation
Content negotiation instead of file extensions to specify desired formats, support (valid) JSON format
among the representation alternatives:
4 GET http://api.test.org/universities

Accept: application/json
6 GET http://api.test.org/universities.json

Operations
Avoid tunneling requests through Get and Post and instead make standard use of the methods:
4 DELETE http://api.test.org/universities/1

Status 204
6 GET http://api.test.org/api?action=delete&target=university&id=1

Hyperlinks
Links should not be constructed by clients but obtained from the resource representation, they
should follow a consistent structure and be sensitive to the current state of the resource:
4 GET http://api.test.org/universities/1

Accept: application/json
<{ "name" : "UniTN",
< "links" : { "faculty-centers" : "/universities/1/faculty-centers" } }
6 GET http://api.test.org/universities/1

Accept: application/json
<{ "name" : "UniTN" }

Table 1. REST API design best practices with compliance (4) and violations (6)

2.2 Assessing REST compliance

Next to the lower-level development best practices, concrete APIs may follow
the very principles underlying REST to di↵erent extents. The maturity model
by Richardson [8] o↵ers a way to explain the respective degree of compliance by
means of di↵erent levels of maturity:

– Level 0 : At this level, APIs work by tunneling requests through a single
endpoint (URL) using one HTTP method. Examples of services working at
this level are XML-RPC and those SOAP/WSDL services that transmit all
communications as HTTP Post requests and use HTTP purely as transport
protocol. Yet, also some REST APIs adopt this technique.

– Level 1 : At this level, instead of using a single endpoint, functionality ex-
posed by the API is split over multiple resources, which increases the ad-
dressability of the API and facilitates consumption. However, services at
Level 1 still make use of payload data or the URL to identify operations.

– Level 2 : APIs at this level make proper use of the HTTP methods and status
codes for each resource and correctly follow the uniform interface principle.

– Level 3 : APIs at this level embrace the notion of hypermedia. Thus, not only
resources can be accessed through a uniform interface but their relationships
can be discovered and explored via suitable links.



6

Radio Network 
Controller 

(RNC)

Serving GPRS 
Support Node 

(SGSN)

Gateway GPRS 
Support Node 

(GGSN)
Internet

Radio Network 
Controller 

(RNC)

Radio Network 
Controller 

(RNC)

Probe

Core network

ProbeProbes
ProbeProbeData 

Collectors
Data Pre-
processor

HTTP traffic files
(every 15 mins)

Network usage files
(every 15 mins)

Raw traffic
(stream)

HTTP/usage files (every 15 mins)

Node B

Node B

URLIP Cell_IdBytesHTTP_HeadStartTimeSub_Id EndTime

Fig. 1. Cellular network architecture with probes for the collection of Mobile Internet
usage data and an excerpt of the structure of the data studied in this article.

Each level of compliance comes with greater benefits in terms of quality and
ease of use by the developer familiar with REST. We will come back to these
levels when analyzing the adherence of APIs to the principles and best practices.

3 Mobile telco infrastructure and dataset

In order to study how well the state-of-the-art landscape of REST APIs com-
plies with the introduced principles and guidelines, in this paper we rely on a
dataset of 78GB of plain HTTP tra�c collected by Italys biggest Mobile Inter-
net (MI) provider, Telecom Italia. To understand the nature and provenance of
the dataset, Figure 1 provides a functional overview of the underlying cellular
network architecture (upper part) and of how data was collected (lower part).

The cellular network uses 2G (GSM/GPRS), 3G (UMTS) and 4G (LTE)
base stations (Node B) for the connection of mobile devices. The Radio Network
Controllers (RNCs) control the base stations and connect to the Serving GPRS
Support Nodes (SGSNs) that provide packet-switched access to the core network
of the operator within their service areas. Via the core network, the SGSNs
are connected with the Gateway GPRS Support Nodes (GGSNs) that mediate
between the core network of the operator and external packet-switched networks,
in our case the Internet. The GGSNs also assign the IP addresses to the devices
connected to the Internet through the operator’s own network.

If a mobile device issues an HTTP request to a server accessible over the
Internet, the request traverses all the described components from left to right.
Special hardware probes tap into the connection between the SGSN and the
GGSN to intercept raw tra�c. The probes forward the tra�c to multiple, parallel
data collectors that filter the intercepted data by purpose (we specifically focus
on network usage and HTTP tra�c) and produce purpose-specific log files as



7

output; each file contains approximately 15 minutes of tra�c. For our analysis,
a pre-processing of the files is needed to join the HTTP tra�c records with the
network usage records, so as to be able to correlate tra�c with network usage
properties like cell IDs or data sizes.

The result is a set of joint, enriched HTTP tra�c files of which Figure 1 shows
an excerpt of the data structure: Sub Id and IP are the subscriber identifier and
IP address (both fully anonymized), StartTime and EndTime delimit the HTTP
transaction as registered by the cellular network, URL contains the complete
URL requested by the mobile device, HTTP Head contains the full header of
the HTTP request, Bytes contains the size of the data uploaded/downloaded,
and Cell Id uniquely identifies the base station the device was connected to.

The available dataset was collected throughout the full day of 14 October
(Wednesday) by one data collector located in the metropolitan area of Mi-
lan, Italy. The average amount of HTTP tra�c recorded per day is about 150
GB (about 340 mln individual HTTP requests), the usage data is in the or-
der of 200 GB/day; the enriched HTTP tra�c files amount to approximately
180 GB/day. The pre-processor joining the HTTP tra�c and network usage
files is implemented by the TILab software group in Trento using RabbitMQ
(https://www.rabbitmq.com) for the parallel processing of chunks of input data
and Redis (http://redis.io) for in-memory data caching of joined tuples to
be added to the enriched HTTP tra�c files in output.

Please note that, in line with similar Internet usage studies [1], personal
identifiers were anonymized prior to the study, and only aggregated values are
reported. Data are stored on in-house servers and password protected. Before
publication, the work was checked by Telecom for compliance with Italian Law
D.Lgs 196/2003 (which implements the EU Directive on Privacy and Electronic
Communications of 2002), Telecom’s own policies, and the NDA signed between
Telecom and University of Trento.

4 Mobile Internet tra�c analysis

We start our analysis of the use of REST APIs with a set of descriptive statistics
about the available dataset as a whole. We recall that the data contain all HTTP
requests recorded by the data collector over one full day of usage, including
regular Web browsing activities. The analysis of the dataset provides an up-to-
date picture of the Mobile Internet and informs the design of heuristics for the
identification of those calls that instead involve APIs only (next section).

It is important to note that our analysis is based on HTTP tra�c only and,
for instance, does not take into account HTTPS tra�c, streaming of audio/video
media, or other protocols. As for the quality of the data analyzed, the data pre-
processor’s data joining logic has proven to have an approximate success rate
of 90% (due to diverse imprecisions in the input data); we could however not
identify any systematic bias in the dataset due to failed joins.



8

4.1 HTTP requests and responses

Figure 2 summarizes the key characteristics of the dataset we leverage on in this
paper. Figure 2(a) reports on the di↵erent HTTP methods (also called “verbs”)
used by the recorded HTTP requests, along with the respective count. We can see
that the two most commonly used methods (Get and Post) dominate the tra�c
in today’s Mobile Internet, followed by other methods such as Connect, Head,
Put, Options and Delete. The less common methods Propfind and Proppatch
are used by Web Distributed Authoring and Versioning (WebDAV), an extension
of HTTP for web content authoring operations (see RFC 2518 [9]). Source (used
by the Icecast multimedia streaming protocol), Dvrget and Dvrpost (used for
multimedia/multipart content and streaming over HTTP), and List are other
non-standard HTTP methods.

The identified usage of HTTP methods provide a first indication of the poten-
tial compliance of the RESTful APIs with the REST architectural style guide-
lines [6], which, as we have seen earlier, advocate the use not only of Get and
Post, but also of Put, Delete, Options, Head, etc. for the implementation of
what is called the “uniform interface” of REST APIs. Our dataset shows that
by now these request methods are not only being used by some APIs, but have
turned into state of the art.

In this respect, it is good to keep in mind that the mobile app market is largely
characterized by applications that heavily leverage on Web APIs to provide
their users with mobile access to large content repositories and highly scalable
computing power, two resources that are typically limited on mobile devices.
Since our dataset captures Mobile Internet usage, there may be a bias toward a
more rich use of HTTP methods. On the other hand, it is important to note that
the Connect methods are used to establish HTTPS connections, that is to switch
from plain HTTP to its encrypted counterpart HTTPS. Once a communication
switches from HTTP to HTTPS (e.g., when a user logs in to Facebook) we
are no longer able to intercept tunneled HTTP requests and, hence, to follow
the conversation. The estimation of the telco operator is that, of all the mobile
internet tra�c, around 25-30% corresponds to HTTPS tra�c. We acknowledge
the lack of such type of tra�c as a limitation of our dataset.

Figure 2(b) illustrates the counts of the HTTP response codes corresponding
to the requests in Figure 2(a). According to the figure, the recorded requests
feature a rich and varied usage of HTTP response codes. Responses are domi-
nated by successful and redirection operations (2xx and 3xx codes), and errors
(4xx and 5xx) are mainly due to clients requesting resources not found on the
server (404) or forbidden to the client (403). In 2005, Bhole and Popescu [24] did
a similar analysis of HTTP response codes and identified only 5 di↵erent codes
in their dataset, with status code 200 representing 88% of the analyzed tra�c –
despite the HTTP protocol specification (version 1.1) dating back to 1999 [7]. In
other words, after approximately one decade HTTP responses are characterized
today by a much richer use of response codes and APIs that e↵ectively work
with the standard semantics of both request methods and response codes.



9

1M

3M

10M

32M

100M

To
ta

l c
ou

nt
 (l

og
 s

ca
le

)

User agents
Mozilla/5.0
Dalvik/1.6.0
Instagram
Dalvik/2.1.0
Apache-HttpClient/UNAVAILABLE
NativeHost
MicroMessenger
android-async-http/1.3.1
Windows
SAMSUNG-Android

1M

1.8M

3M

5.6

10M

17.7M

31M

56M

To
ta

l c
ou

nt
 (l

og
 s

ca
le

)
Media types
text/html
image/jpeg
image/gif
application/json
text/plain
image/png
text/javascript
application/octet-stream
text/xml
application/javascript

0

17

316

5K

100K

2M

32M

10
1

20
0

20
1

20
2

20
3

20
4

20
5

20
6

30
0

30
1

30
2

30
3

30
4

30
7

40
0

40
1

40
2

40
3

40
4

40
5

40
6

40
7

40
8

40
9

41
0

41
1

41
2

41
3

41
4

41
5

41
6

50
0

50
1

50
2

50
3

50
4

50
5

To
ta

l c
ou

nt
 (l

og
 s

ca
le

)

categories
1xx Informational
2xx Successful
3xx Redirection
4xx Client error
5xx Server error

(a) Total count (in log scale) for each HTTP method (b) Total count (in log scale) for each HTTP 
response code

(c) Median of bytes received and transmitted by 
HTTP method 

(e) Total count (in log scale) for each of the 
top 10 user agents

(d) Total count (in log scale) for each of the top 10 
media types

0

10

100

1K

10K

100K

1M

10M

100M

To
ta

l c
ou

nt
 (l

og
 s

ca
le

)

HTTP methods
GET
POST
CONNECT
HEAD
PUT
OPTIONS
DELETE
PROPFIND
DVRGET
DVRPOST
SOURCE
LIST
PROPPATCH

0

10

100

1K

10K

100K

1M

10M

G
E
T

P
O
S
T

C
O
N
N
E
C
T

H
E
A
D

P
U
T

O
P
TI
O
N
S

D
E
LE
TE

P
R
O
P
FI
N
D

S
O
U
R
C
E

LI
S
T

P
R
O
P
P
A
TC
H

M
ed

ia
n 

of
 b

yt
es

 (i
n 

lo
g 

sc
al

e) Bytes received/sent
Bytes received (Rx)
Bytes sent (Tx)

Fig. 2. Descriptive statistics of the available dataset characterizing state-of-the-art
Mobile Internet tra�c as of October 2015.



10

Figure 2(c) looks more detailedly into the di↵erent HTTP request methods
and shows how much data is transmitted/received per method. Overall, the
median of transmitted data is 1463 bytes, while the median of received data is
1643 bytes. The same numbers approximately hold for all methods, except for
the Source method, which presents significantly higher values; we recall that the
method is used by Icecast to stream multimedia content.

In 1995, Mah [13] showed that the median HTTP response length was about
2 KB. Pang et al. [20] registered a similar response length in 2005, and Maier et
al. [15] approximately confirm analogous numbers in 2010. In the end of 2015,
our dataset too confirms a similar median response length. This almost stable
picture is somehow surprising, as over the last years we all have witnessed a Web
that has grown more complex, in terms of both content and functionality. On
the other hand, Mah also showed that in 1995 the median HTTP request length
was about 240 bytes [13], while our dataset presents a median request length of
about 1.5 KB. This change of the length of the requests must be explained by
a di↵erent use of the Internet in upload between the two dates. In fact, from
1995 to today, the Web has evolved from Web 1.0 to Web 2.0, that is, from
mono-directional content consumption to fully bidirectional content co-creation.
The increase of request lengths provides evidences of this paradigm shift. A
confirmation of this, however, would require an own, purposely designed study.

4.2 Media type usage

“Media types” are the generic Web synonym of “representations” in REST.
Studying the media types returned by the HTTP requests allows one therefore
to obtain a first indication of which representations state-of-the-art APIs use.
Figure 2(d) shows the ten most used media types in our dataset. Keeping in
mind that the dataset contains generic Web tra�c (not only API tra�c), it
is of no surprise to find text/html on the first place, followed by image/jpeg
and image/gif. More surprising is that the data format application/json is al-
ready on the forth position, while text/xml is only on the ninth position. As can
further be seen in the figure, both text/javascript and application/java-
script refer to the same media type and, hence, the naming of the media types
is not consistent throughout the di↵erent applications and/or APIs. In fact, it
is good to note that the figure only shows the ten most used media type decla-
rations; overall, the dataset contains 1134 di↵erent media type declarations.

The two media types that are of particular interest in this paper are of course
JSON and XML, as these are meant for machine consumption and therefore re-
fer to the invocation of an API or service. We exploit this property later on to
identify calls to APIs among the huge amount of calls in the dataset. SOAP web
services [21] too transfer XML-encoded data, yet the respective XML-encoded
SOAP envelope is always associated with the media type application/soap+xml
and transmitted via HTTP Post requests. It is therefore easy to distinguish calls
to SOAP web services from potential calls to REST APIs.



11

4.3 User agents

Finally, with Figure 2(e) we would like to shed some light on the user agents
used to issue the requests logged in our dataset. The figure again shows the ten
most used user agents from a total of 57571 di↵erent user agent declarations. On
the first position, we find Mozilla/5.0 with an extraordinary predominance. To
understand this result, it is important to notice that the user agent string in the
header of HTTP requests can be assigned arbitrarily by the user agents them-
selves. And this is what happens in practice, as nicely explained by Aaron An-
dersen in his blog http://webaim.org/blog/user-agent-string-history/:
in order to prevent user agent sni�ng and being discriminated, most modern
Web browsers declare to be compatible with Mozilla/5.0 (even Internet Ex-
plorer, Edge, Safari and similar). More interesting to our own analysis are the
user agents Dalvik (Android virtual machine), Android and Windows that testify
the presence of mobile devices, while the user agents Instagram and MicroMes-
senger represent native mobile apps able to issue HTTP requests. Indeed, a closer
inspection of our dataset revealed that 40.8% of the tra�c corresponds to native
apps, while the rest 59.2% is tra�c generated from mobile, web browsers. As
a follow up, future work we would like explore these two worlds with an own,
dedicated study to understand whether and how they di↵er from each other.

5 REST API analysis

Given our dataset, which can be seen as a generic dump of HTTP requests that
interleaves requests directed toward APIs for machine consumption with requests
directed toward Web applications for human consumption, the first problem to
solve is identifying which requests actually refer to the former. This is necessary
to be able to e↵ectively focus the analysis on APIs for software agents (from now
on simply APIs) and not to be distracted by regular Web navigation activities.
Given the limited amount of information available about the recorded HTTP
requests, the problem is not trivial and requires the application of API-specific
heuristics.

Recalling Figure 2(d), we remember that among the top-10 media types used
in our dataset we have JSON and XML, which are typical data formats for the
exchange of data between software agents. It is thus reasonable to assume that
requests returning any of these two media types are directed toward APIs. In
order to identify such requests, we considered only those requests that contain the
strings ‘json’ and ‘xml’ in their media type declaration. Examples of these include
the common media types application/xml and application/json, but also
less common media types such as application/vnd.nokia.ent.events+json
and application/vnd.wap.xhtml+xml. The total number of such requests in
our dataset is 18.2 million, 9.3 million for JSON and 8.9 million for XML.

In order to assure that these requests really return JSON and XML and
to characterize the typical responses, we sampled all JSON and XML requests
independently and representatively for the whole dataset using a 95% confidence
level and a confidence interval of 3. This corresponds to 1067 requests to the



12

Fig. 3. Size in bytes for JSON and XML payloads, and media type distribution by host

corresponding, presumed APIs randomly picked for both media types to obtain
their payloads. Figure 3(a) shows the cumulative density function of the payload
sizes. The medians are 1545 and 2606 bytes, respectively, for JSON and XML.

We also checked the formal validity of the payloads. Checks were performed
using Python’s internal libraries, which reported that 75% and 76% of the re-
quests contained valid JSON and XML, respectively. The main reasons for invalid
payloads were either empty payloads or, in the case of declared JSON payloads,
the presence of JSONP callbacks (JSON wrapped in Javascript code) instead.
As for the empty payloads, an inspection of the respective HTTP status codes
reveals that most of them are explained by 4xx and 5xx error codes, that is, by
resources that no longer exist or are not addressable on the server or because of
session expiration. Overall, the counts of the status codes (in parenthesis) in the
sample are: for JSON 1xx (0), 2xx (1204), 3xx (1), 4xx (243) and 5xx (53), and
for XML 1xx (0), 2xx (1280), 3xx (0), 4xx (233) and 5xx (2).

The next step toward the identification of APIs would be deciding which con-
crete URLs serve as APIs end/entry points (e.g., api.server.org/universities),
starting from where clients can start exploring the APIs. Doing so is however not
feasible without inspecting each API individually. We thus limit our analysis in
this section to individual HTTP requests, without trying to infer API endpoints.

Given an HTTP request, the options for end points may range from the
plain host name (e.g., api.server.org) to the full URL at hand (e.g., api.
server.org/universities/45/people/3). We discard this last option as too
fine-grained, while, ideally, APIs should be accessible through a dedicated host
name not used for other purposes. This would make the host name an identifier.

We tested this assumption: Using the same sample of 1067 requests as above,
we identified the respective individual host names (incidentally precisely 1000)



13

and went back to the full dataset recorded by the data collector to retrieve all
media types that are accessible through these host names. If the host names were
used only to provide API access, the media types would all be media types ori-
ented toward software agents. In order to keep the computation manageable, we
used a 15 minutes time slot of the full dataset collected during a high tra�c hour.
The slot contains a total of 3.2 million requests that, when joined with the 1000
di↵erent host names, corresponds to 3.2 billion comparisons. Figure 3(b) shows
the relative frequency for the top-10 media types identified. The media type
aplication/json has the highest frequency, followed by text/html, text/xml
and others. The presence of text/html, text/css and text/javascript in-
dicates that through the same host names also content oriented toward human
agents (Web sites) is delivered, not only content oriented toward software agents.
Hence, we conclude that host names are not good API identifiers in general.

5.1 Compliance with design best practices

Next, we specifically focus on the set of 18.2 million API requests identified
previously and study how well the designers of the respective APIs followed the
design principles and best practices introduced in Section 2. We define a set of
heuristics based on the request metadata available in the dataset as well as on
the payloads we obtained from our representative sample of API invocations, in
order to derive empirical evidence of compliance (or not).

Since some of the best practices as well as the maturity levels discussed in
the next section do not apply to individual HTTP requests (which would be
too fine-grained), we group requests by host names. This means that rather
than studying the compliance of APIs or HTTP requests we study that of API
providers, in that we look at the full tra�c toward the APIs accessible under
one and a same host name. Di↵erently from the data underlying Figure 3(b),
here we only focus on requests targeted toward JSON and XML resources and,
hence, we are sure we study API-related tra�c only.

The heuristics are summarized in Table 2, implemented in JavaScript for
node.js and Python, and the respective code is available on https://github.
com/mbaezpy/api-analysis. For instance, rUnderscore uses a regular expres-
sion to tell whether an invoked URL contains underscores; we recall that the
guideline is instead to use hyphens. rLowercase checks whether URLs comply
with the guideline to use only lowercase letter, while rSlash checks that URLs
don’t end with a final slash character. We refer the interested reader to the online
resource for the concrete implementation of all heuristics.

Figure 4(a) illustrates the mean, median and standard deviation of the com-
pliance of the identified host names with each of the heuristics. For example, if
we take heuristic rUnderscore, we can see that, on average, 75% of the resources
accessible through a host comply with this heuristic, with a median of 100% and
a standard deviation of 41%, approximately. The figure shows that all except one
heuristic (rApiInDomain) have a median of 100%, and that they reached means
higher than 95%, the exceptions being rUnderscore, rLowercase, rSlash and
rApiInDomain as well as rHideExtension and rFormatExtension.



14

Heuristics Description
rUndescore Number of URLs avoiding the use of underscores in URLs
rLowercase Number of URLs using lowercase in paths
rSlash Number of URLs avoiding the trailing forward slash
rVersionInPath Number of URLs avoiding version number in the path
rVersionInQuery Number of URLs avoiding version number in the query params
rApiInDomain Number of URLs with API as part of the subdomain
rApiInPath Number of URLs with API as part of the path
rCrudResource Number of URLs avoiding CRUD operations as resource name
rHideExtension Number of URLs hiding the implementation technology
rFormatExtension Number of URLs avoiding media type as resource extension
rQueryExtension Number of URLs avoiding media type as query param
rCrudInParam Number of URLs avoiding CRUD actions in query params
rActionInQuery Number of URLs using action params (to tunnel operations)
rIdInQuery Number of URLs avoiding resource IDs as part of the query
rResNameApi Number of URLs avoiding use of API as resource name
rMatchMedia Number of URLs not violating the use of content type
rCacheQuery Number of URLs avoiding the use of CACHE in query params
rHypermedia Number of URLs containing hypermedia links for control

Table 2. Description of heuristics to identify compliance with design best practices.

Overall, these results are better than we expected. The lower compliance
with the former four heuristics is not major issue that a↵ects the quality of
the actual service provided through an API; they refer to naming conventions,
which may or may not be shared by all developers. However, the still rather
high compliance with the first three heuristics tells that most of the developers
actually do follow the best practice, while they don’t seem to like the use of
“api” in the URL (consistently with the finding above that host names typically
intermix content for human and software agents). The low compliance with the
heuristics rHideExtension and rFormatExtension, instead, may have a nega-
tive e↵ect on the maintainability and future evolvability of APIs. In fact, making
implementation technologies explicit in the URL (e.g., the file su�x .php) hin-
ders the switch from one server-side implementation technology to another (e.g.,
node.js). By the same token, showing resource extensions (e.g., .json) prevents
content negotiation between client and server to agree on which representation
format to exchange (e.g., XML instead of JSON). Of course, both cases can still
be implemented (e.g, by using javascript inside an endpoint with su�x .php and
by delivering XML through a resource with extension .json), but conventions
have their meaning, and developers would be confused and software agents (e.g.,
Web servers) may not properly handle these mismatches.

5.2 API maturity levels

In order to estimate the compliance of the identified APIs with the maturity
levels by Richardson, we leverage on some of the above heuristics to implement
composite logics representing each of the four levels of maturity. Again, we study
the dataset of 18.2 million API requests and group requests by host name to
study API providers rather than individual requests or APIs. Starting from the
heuristics introduced earlier, we assign maturity levels to hosts as follows:



15

0.0

0.2

0.4

0.6

R
el

at
iv

e 
fre

qu
en

cy

Maturity levels

L0 (Tunneling)
L1 (Multiple resources)
L2 (HTTP methods / status codes)
L3 (Hypermedia controls)

(a) Median (☐), mean (!) and standard deviation 
(sliders) of the compliance with individual best practices. 

(b) Relative frequency of the maturity 
levels by each domain exposing an API

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
ea

n,
 m

ed
ia

n 
an

d 
st

an
da

rd
 d

ev
ia

tio
n 

of
 re

la
tiv

e 
fre

qu
en

cy
rU
nd
es
co
re

rL
ow
er
ca
se

rS
la
sh

rV
er
si
on
In
Pa
th

rV
er
si
on
In
Q
ue
ry

rA
pi
In
D
om
ai
n

rA
pi
In
Pa
th

rC
ru
dR
es
ou
rc
e

rH
id
eE
xt
en
sio
n

rF
or
m
at
Ex
te
ns
io
n

rQ
ue
ry
Ex
te
ns
io
n

rC
ru
dI
nP
ar
am

rA
ct
io
nI
nQ
ue
ry

rId
In
Q
ue
ry

rR
es
Na
m
eA
pi

rM
at
ch
M
ed
ia

rC
ac
he
Q
ue
ry

Fig. 4. Compliance of APIs with best practices and maturity levels of API providers.

– Level 0, Tunneling. As from a given URL is not possible to derive in practice
whether the respective API consists of one endpoint only, we check whether
the requests declare actions as query parameters (rActionInQuery), whether
they pass resource identifiers as a parameters (rIdInQuery), or whether they
have a resource name that suggests tunneling (rResNameApi).

– Level 1, Resources. Here we look for APIs that use multiple endpoints that
however do not yet make proper use of the semantics of HTTP. The heuris-
tics we use here are CRUD names as resources (rCrudResource), prob-
lems in content negotiation (rFormatExtension, rQueryExtension), self-
descriptiveness (rMatchMedia), and use of headers (rCacheQuery).

– Level 2, HTTP methods. API providers that make use of resources and proper
use of HTTP qualify for this level. However, at this level APIs don’t make
yet use of hypermedia links. The heuristics used for this level include the
avoidance of CRUD operations in the query params (rCrudResource), me-
dia types as resource extension (rFormatExtension), media types as query
parameters (rQueryExtension), “cache” in query params (rCacheQuery),
as well as the matching of media types with actual content (rMatchMedia).

– Level 3, Hypermedia. Hypermedia means links inside resource representa-
tions to enable the client to navigate among resources. The rHypermedia
heuristic helps us identify resources in this level by looking for hypermedia
links inside the payload of HTTP responses.

The following pseudocode implements the logic for the identification of lev-
els (dNumResources is the number of individual URLs accessed through a given
host, dNumMethods is the number of di↵erent HTTP methods used by the re-
quests):



16

f unc t i on ca l cu l a t eLeve l 012 (){
i f ( dNumResources == 1 && dNumMethods == 1 && ( rActionInQuery < dNumResources | |

rIdInQuery < dNumResources | | rResNameApi < dNumResources ) ) {
l e v e l = ”L0” ;

} else i f ( rActionInQuery < dNumResources | | rIdInQuery < dNumResources | |
rCrudResource < dNumResources | | rFormatExtension < dNumResources | |
rQueryExtension < dNumResources | | rMatchMedia < dNumResources | |
rCacheQuery < dNumResources ) ) {

l e v e l = ”L1” ;
} else {

l e v e l = ”L2” ;
}
return l e v e l ;

}

f unc t i on ca l cu l a t eLeve l 3 (){
r e s ou r c e s = resources InL2 . sample ( ) . getPayloads ( ) ;
numResources = count ( r e s ou r c e s ) ;
rHypermedia = 0 ;
for r e source in r e s ou r c e s {

i f ( r e source conta ins hypermedia l i n k s ){
rHypermedia = rHypermedia + 1 ;

}
}
est imatedLeve l = rHypermedia / numResources ;
return est imatedLeve l ;

}

Compliance with Levels 0-2 is computed on the full dataset containing the
18.2 million requests, including both XML and JSON. Since the computation of
Level 3 needs access to the actual payload of the requests, Level 3 is computed
over a representative sample of the hosts complying with Level 2 (which is a
prerequisite for Level 3) for which we were able to access the respective payloads.
The sample consists of 1048 di↵erent requests with a confidence level of 95% and
a confidence interval of 3, along with the corresponding payloads.

The result of this analysis is illustrated in Figure 4(b), which reports the
fractions of the studied dataset that comply with the four maturity levels. Few
hosts reach Level 0; note that we explicitly focus on requests toward REST APIs
and therefore excluded invocations of SOAP or XML-RPC calls by discriminat-
ing the respective media types. A significant part of the dataset complies with
Level 1, yet the respective APIs do not make proper use of HTTP. The biggest
part of the dataset, however, does make good use of HTTP and complies with
Level 2, while only few hosts qualify for Level 3. These data indicate that the
current use of REST APIs is mostly targeted at providing CRUD access to indi-
vidual resources (Level 1 and 2), while full-fledged APIs that properly interlink
resources and use hypermedia as the engine of state are still rare (Level 3).

Despite big steps towards resource-oriented services, there is still a large
percentage of services not taking full advantage of the HTTP protocol to provide
true standard interfaces. Developers should be more aware of the benefits of
standard interfaces, e.g., to be compliant with the increasing number of libraries
and frameworks (e.g., backbone.js, ember.js) based on RESTful principles. The
limited support of hypermedia, comes as no surprise as there is no agreement
on (de facto) standards or formats, at least not in JSON, to make the required
investment by both service providers and clients worthwhile.

6 Related work

Large scale analyses of HTTP requests have been presented in several works,
but focusing mainly on quality of service [11], user profiling [14] or the general



17

understanding of Internet tra�c [15]. Analyses of RESTful design patters and
anti-patterns have been the subject of recent studies [18, 19]. Palma et al. [18]
presented a heuristic-based approach for automatically detecting anti-patterns
in REST APIs, namely SODA-R, that relies on service interface definitions and
service invocation. The authors analyzed 12 popular REST APIs, finding anti-
patterns in all of them, with more anti-patterns than patterns in services like
Dropbox and Twitter. As an extension, the same authors [19] also looked at
linguistic properties in 15 widely-used APIs with similar results. These studies
provide insight into design patterns and tell us that even popular REST APIs
have their issues. However, these works focus more on the validation of the pro-
posed frameworks rather than on a large scale analysis of API design practices.

In contrast, in this paper we perform a large-scale analysis of REST API
design best practices and of the underlying principles by studying up-to-date
Mobile Internet tra�c traces. Although limited by the metadata available, the
large scale of the analysis presented in this paper gives us insights into the current
practice that was not present in the aforementioned studies.

7 Conclusion

The work described in this paper advances the state of the art in Web engineer-
ing with three core contributions: First, to the best of our knowledge this is the
first work that empirically studies how well the developers of REST APIs follow
the theoretical principles and guidelines that characterize the REST architec-
tural style. Second, the work defines a set of heuristics and metrics that allow
one to measure implementation anti-patterns and API maturity levels. Third,
the respective findings clearly show that, while REST APIs have irreversibly
percolated into modern Web engineering practice, the gap between theory and
practice is still surprisingly wide, and only very few of the analyzed APIs reach
the highest level of maturity.

These findings all point into one direction: The implementation and usage of
REST APIs – as well as that of Web services more in general – is still far from
being a stable and consolidated discipline. On the one hand, this asks for bet-
ter, principled Resource-Oriented and, in general, Service-Oriented Computing
(SOC) methodologies, tools and skills [12]; pure technologies are mature enough.
On the other hand, keeping in mind the ever growing strategic importance of
APIs to business, this asks for better and more targeted service/API quality and
usage monitoring instruments, such as proper KPIs for APIs [17].

Acknowledgement. This research has received funding from the Provincia Autonoma

di Trento under the project e2Call (Enhanced Emergency Call), grant agreement num-

ber 82/13. The authors thank all partners within e2Call for their contribution.

References

1. X. An and G. Kunzmann. Understanding mobile internet usage behavior. In
Networking Conference, 2014 IFIP, pages 1–9. IEEE, 2014.



18

2. T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource identifier (uri):
Generic syntax. Technical report, 2004.

3. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen,
S. Thatte, and D. Winer. SOAP Version 1.2. W3c recommendation, W3C, Apr.
2007. http://www.w3.org/TR/soap/.

4. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1. W3c note, W3C, Mar. 2001.

5. F. Daniel and M. Matera. Mashups: Concepts, Models and Architectures. Springer,
2014.

6. R. Fielding. Architectural Styles and the Design of Network-based Software Archi-
tectures. Ph.d. dissertation, University of California, Irvine, 2007.

7. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. Technical Report RFC 2616, The
Internet Society, http://www.ietf.org/rfc/rfc2616.txt, 1999.

8. M. Fowler. Richardson maturity model: steps toward the glory of rest. Online at
http: // martinfowler. com/ articles/ richardsonMaturityModel. html , 2010.

9. Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. HTTP Extensions
for Distributed Authoring – WEBDAV. Rfc 2518, The Internet Society, https:
//tools.ietf.org/html/rfc2518, 1999.

10. M. Hadley. Web Application Description Language. W3c member submission, Sun
Microsystems, 2009. http://www.w3.org/Submission/wadl/.

11. S. Khirman and P. Henriksen. Relationship between quality-of-service and quality-
of-experience for public internet service. In 3rd WS on Passive and Active Mea-
surem., 2002.

12. A. Lagares Lemos, F. Daniel, and B. Benatallah. Web Service Composition: A
Survey of Techniques and Tools. ACM Comput. Surv., 48(3), Article 33, 2015.

13. B. Mah et al. An empirical model of http network tra�c. In INFOCOM’97,
volume 2, pages 592–600, 1997.

14. T. Mai, D. Ajwani, and A. Sala. Profiling user activities with minimal tra�c traces.
In 15th International Conference on Web Engineering (ICWE), 2015.

15. G. Maier, F. Schneider, and A. Feldmann. A first look at mobile hand-held device
tra�c. In Passive and Active Measurement, pages 161–170. Springer, 2010.

16. M. Masse. REST API design rulebook. O’Reilly Media, Inc., 2011.
17. J. Musser. KPIs for APIs. The Business of APIs Conference 2014. http://www.

slideshare.net/jmusser/kpis-for-apis.
18. F. Palma, J. Dubois, N. Moha, and Y.-G. Guéhéneuc. Detection of rest patterns

and antipatterns: A heuristics-based approach. In ICSOC, pages 230–244. 2014.
19. F. Palma, J. Gonzalez-Huerta, N. Moha, Y.-G. Guéhéneuc, and G. Tremblay. Are

restful apis well-designed? detection of their linguistic (anti) patterns. In ICSOC,
pages 171–187. 2015.

20. R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney. A first look
at modern enterprise tra�c. In Proceedings of the 5th ACM SIGCOMM conference
on Internet Measurement, pages 2–2. USENIX Association, 2005.

21. M. P. Papazoglou. Web Services - Principles and Technology. Prentice Hall, 2008.
22. C. Pautasso. Some rest design patterns (and anti-patterns), 2009.
23. C. Pautasso. Restful web services: principles, patterns, emerging technologies. In

Web Services Foundations, pages 31–51. Springer, 2014.
24. Y.Bhole and A.Popescu. Measurement and analysis of http tra�c. Journal of

Network and Systems Management, 13(4):357–371, 2005.


