

1

Crowdsourcing processes: a survey of approaches and
opportunities
Pavel Kucherbaev1, Florian Daniel1,2, Stefano Tranquillini1, Maurizio Marchese1
1 University of Trento, Italy
2 Tomsk Polytechnic University, Russia

Abstract. This article makes a case for crowdsourcing approaches that are able to manage crowdsourcing
processes, that is, crowdsourcing scenarios that go beyond the mere outsourcing of multiple instances of a
micro-task and instead require the coordination of multiple different crowd and machine tasks. It
introduces the necessary background and terminology, identifies a set of analysis dimensions, and surveys
state-of-the-art tools, highlighting strong and weak aspects and promising future research and
development directions.

Keywords: Crowdsourcing, crowdsourcing processes, tools and platforms

Introduction
Crowdsourcing is the outsourcing of a unit of work to a crowd of people via an open call for contributions
[1]. Thanks to the availability of online crowdsourcing platforms, such as Amazon Mechanical Turk or
CrowdFlower, the practice has experienced a tremendous growth over the last few years [13] and
demonstrated its viability in a variety of different fields, such as data collection and analysis or human
computation - all practices that leverage on so-called micro-tasks, which ask workers to complete simple
assignments (e.g., label an image or translate a sentence) in exchange for an optional reward (e.g., few
cents or dollars). The power of crowdsourcing is represented by the crowd, which may be huge and span
the World, and its ability to process even thousands of tasks in short time.

The practice is, however, also increasingly struggling with the inherent limitations of crowdsourcing
platforms: not all types of work can easily be boiled down to simple micro-tasks, most platforms still
require significant amounts of manual work and configuration, and there is only very limited support for
structured work, that is, work that requires the integration of different tasks and multiple actors, such as
machines, individuals and the crowd. We call these kinds of structured works crowdsourcing processes,
since they require the coordination of multiple tasks, actors and operations inside an integrated execution
logic.

Without proper support for the design and execution of crowdsourcing processes, running them requires
a huge amount of manual development, data management and coordination effort as well as specialized
expertise. This shortcoming is acknowledged by the recent emergence of advanced crowdsourcing
approaches, such as TurKit [8], Jabberwocky [2], CrowdDB [4] and similar, which all aim to ease the
development and execution of crowdsourcing processes, typically by building on top of existing
crowdsourcing platforms. However, they also all come with a different perspective on the problem and,
hence, present different features and capabilities.

The purpose of this article is to introduce the reader to the problem of developing and running
crowdsourcing processes and to provide an up-to-date picture of the approaches that have emerged so far.
We identify a set of dimensions for the analysis of platforms for crowdsourcing processes and review the
state of the art accordingly. The analysis produces a set of considerations that may direct future research
and development efforts.

Digital Object Indentifier 10.1109/MIC.2015.96 1089-7801/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Internet Computing but has not yet been fully edited.
Some content may change prior to final publication.

2

Crowdsourcing processes
Although not explicitly named as “crowdsourcing processes”, literature is rich of examples of scenarios
that could benefit from explicit design and runtime support for crowdsourcing processes. For instance:

• Kulkarni et al. [7] crowdsource article writing (an article about the attractions of NYC) that
involves tasks like structuring an article, writing narrative, splitting content into sections, adding
pictures, iterating over content, and coordinating workers that write, correct or structure text.

• Kittur et al. [6] crowdsource a trip planning scenario (a road trip from NYC to San Francisco)
that requires, for instance, collecting routes, voting for routes, collecting details about hotels,
restaurants, attractions, and iterating over the options based on feedback from the crowdsourcer
(who crowdsources the micro-tasks; often called “requester”).

• Marge et al. [14] study different audio transcription experiments (route instructions for robots),
which requires, for example, hosting audio records, deploying tasks in different batches,
transcribing fragments and gluing them together, iterating over transcriptions until no typos are
left, and controlling that workers don’t contribute to different batches to avoid learning effects.

• Tranquillini et al. [9] mine patterns from models with the help of the crowd, a scenario that
requires dedicated task interfaces for the interactive selection of patterns, the coordination of
pattern identification and assessment tasks, automatically splitting/aggregating the available
dataset, filtering patterns, and similar.

• The Galaxy Zoo project (www.galaxyzoo.org) is a good example of image classification process
that involves tasks like classifying images into spiral, elliptical, irregular or no galaxy, using a
redundant number of workers, describing identified galaxies in function of their galaxy type (e.g.,
number of arms in a spiral galaxy), and asking experts to resolve possible disagreements.

These examples show that in many practical settings crowdsourcing is not just a matter of deploying a set
of simple micro-tasks on a given platform. Instead, it may comprise several different tasks (writing,
transcribing, classifying, aggregating, spell checking, voting), actors (crowdsourcers, workers, experts)
and automated operations (data splitting, resolving redundancy/multiple delegations, taking decisions
about whether to involve an expert or not, synchronizing tasks). Running such processes on top of micro-
task crowdsourcing platforms requires significant amounts of manual work, e.g., to split/aggregate
datasets or tasks, design task UIs for each task in the process, deploy tasks on the target platform, monitor
task executions, collect data, integrate them, split them again, etc. This is highly time consuming and
inefficient, and there is huge potential for automation.

Dimensions of analysis
In order to compare the capabilities of existing solutions for the development of crowdsourcing processes,
from the above examples we derive the following core dimensions and sub-dimensions:

● Definition language: Developing a crowdsourcing process requires a definition language
following some paradigm and notation.

○ Paradigm: tells whether the language is imperative, declarative or configuration-based
(restricted to predefined templates or patterns).

○ Notation: specifies the specific language used, e.g., Scala or BPMN or extensions thereof.
● Task support: Crowd tasks are micro-tasks performed by the workers of the crowd; they

leverage on crowd providers and may provide for different crowd management features. Machine
tasks are automated operations performed by a machine, e.g., a data transformation.

○ Crowd provider: tells which crowd provider (crowdsourcing platform) is supported.

Digital Object Indentifier 10.1109/MIC.2015.96 1089-7801/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Internet Computing but has not yet been fully edited.
Some content may change prior to final publication.

3

○ Crowd management: tells whether additional crowd management features (e.g., pre-
selection or separation of duties) are supported.

○ Machine task definition: tells how machine tasks are specified, e.g., via Web services or
scripts.

● Control flow support: Automating work means automatically coordinating tasks, that is,
controlling the flow of action. The core control flow features crowdsourcing processes may need
are:

○ Task instantiation (individual and multiple instances);
○ Sequential execution;
○ Parallel execution;
○ Decision points for conditional flows;
○ Looping/iterating over similar tasks or data items;
○ Sub-processes (or routines/procedures) to support reuse.

● Data management support: Next to progressing the computation from one task to another, it
is also mandatory to provide each task with the necessary input data. The basic data management
requirements highlighted in our scenario are:

○ Data hosting: tells whether the tool hosts data (e.g., audio transcriptions) or references to
data (e.g., the URLs to the audio files).

○ Data passing: tells whether data are passed via data flows, by value (variables) or by
reference (shared memory).

○ Data splitting/aggregation: tells how data transformations are specified.
● Development support: Implementing a crowdsourcing process further requires designing

suitable crowd tasks and deploying them on the crowdsourcing platform.
○ Crowd task design: tells if and how the tool supports the design of crowd tasks.
○ Task deployment: tells if and how the tool supports the deployment of tasks.

● Quality control support: Finally, a crucial aspect in crowdsourcing is quality control. This
dimension therefore looks at which built-in quality control techniques are supported (e.g.,
iterating over text until no typos are left).

Approaches and tools
The approaches we review in the following are the result of two years of watching emerging technologies
in the context of crowdsourcing. In particular, we consider general-purpose approaches that do not
restrict the types of tasks or processes one can crowdsource. Also, at the time of writing, suitable research
papers or online resources must have been available to allow us to make an informed assessment of the
identified dimensions. These criteria led us to the 11 approaches we describe next.

Selected approaches
Turkit [8] is a JavaScript-inspired scripting language that allows one to programmatically deploy tasks on
Mechanical Turk and to pass data among tasks. AutoMan [3] is a Scala-based programming language
similar to TurKit that automatically manages the scheduling and pricing of task instances and the
acceptance and rejection of results, given a target result quality. Jabberwocky [2] is a MapReduce-based
human computation framework with an parallel programming framework and language. CrowdComputer
[9] is a BPMN-based design and runtime environment for complex crowdsourcing processes with support
for crowd and machine tasks as well as individuals (e.g., experts). CrowdLang [11] is a BPMN-inspired
modeling language with crowdsourcing-specific constructs. CrowdWeaver [5] is a similar model-based
tool with a proprietary notation. CrowdDB [4] is an SQL-extension that allows one to embed crowd tasks
(e.g., inputs and comparisons) into SQL queries. AskSheet [12] is a Google Spreadsheet extension with
functions that allow the spreadsheet to leverage on crowdsourcing tasks. Turkomatic [7] is a

Digital Object Indentifier 10.1109/MIC.2015.96 1089-7801/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Internet Computing but has not yet been fully edited.
Some content may change prior to final publication.

4

crowdsourcing tool for complex tasks that delegates not only work to the crowd but also task management
operations (e.g., splitting tasks). CrowdForge [6] is a Django-based crowdsourcing framework for
crowdsourcing processes similar to Turkomatic that however follows the Partition-Map-Reduce approach.
CrowdSearcher [10] is a system that allows one to design processes using reusable design patterns and to
leverage on machine and crowd tasks as well as on tasks deployed on Facebook.

We are also aware of instruments like CrowdFlow, Quirk, TurkDB, WorkFusion, CrowdFlower Workflows
and others, but we were not able to collect enough public information on them. Other approaches, such as
CrowdTruth or QualityCrowd2, are tailored to specific domains (collection of gold data for machine
learning and video quality assessment, respectively).

Comparison of features
Table 1 describes the selected platforms applying the dimensions and sub-dimensions of analysis
introduced earlier. We also add a “public availability” dimension to the analysis, in order to reflect if and
how an approach can be tried out and tested. To better highlight commonalities and differences, we group
the approaches according to the paradigm of their process definition language (the sub-order does not
follow any temporal or functional order):

● Imperative, textual: the crowdsourcer writes code telling how the process is executed. Specific
notations used are Scala, a JavaScript-like language, or a proprietary language (Dog);

● Imperative, visual: he models how to execute the process visually using graphical abstractions.
Concrete notations are BPMN extensions, BPMN-like notations, or custom notations;

● Declarative: he defines what should be processed or obtained as an output. SQL or spreadsheet
formulas are examples of notations used; and

● Configuration: he fills configuration properties that set up a pre-defined process logic. In this
case, the crowdsourcer is typically guided through the configuration by a wizard.

As for the task support, the most used crowd provider is Mechanical Turk (MTurk), which is however
restricted to crowdsourcers from the USA only; CrowdFlower does not have this restriction. Some
approaches self-manage an own crowd. CrowdSearcher proposes an alternative interpretation and also
supports deploying tasks on Facebook, which adds extra opportunities like access to people that would
not use conventional crowdsourcing platforms (e.g., teenagers) and volunteer work by people in the
crowdsourcer’s own social network. CrowdComputer, given its roots in business process management
(BPM) that focuses on the coordination of human work, also supports assigning tasks to individuals (e.g.,
an expert) via a conventional BPM engine. Crowd management features are only scarcely supported and
mostly focus on worker pre-selection, bonus payments and approval/rejection of results. Machine tasks
come in very different flavors: the imperative, textual approaches allow the crowdsourcer to write own
scripts, the visual approaches rather support reusable modules like Web services, the declarative
approaches are limited to their environment’s native capabilities, and the configuration approaches may
provide for customizable, built-in machine tasks, e.g., for data management.

From the control flow perspective, all the platforms support automated task instantiation. Given their
imperative nature, both the textual and the visual approaches support most of the control flow features;
control flow support by the declarative and configuration approaches is platform specific. Sequential
execution is supported by all except AskSheet (spreadsheet functions are evaluated in parallel). Parallel
execution is more platform specific. Decision points come either as if-statements in imperative, textual
approaches and AskSheet, graphical gateways in the imperative, visual approaches, or adaptation rules in
CrowdSearcher. There are no explicit decision points in Turkomatic, where the workers decide at runtime
whether to split a task or to execute it. Iterative execution is not supported in platforms without decision
points. Sub-processes are only weakly supported; if supported, they are either reusable functions
(imperative, textual approaches), BPMN processes (CrowdComputer), or Python scripts (CrowdForge).

Digital Object Indentifier 10.1109/MIC.2015.96 1089-7801/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Internet Computing but has not yet been fully edited.
Some content may change prior to final publication.

5

Table 1. Analysis of crowdsourcing platforms for crowdsourcing processes
TurKit AutoMan Jabberwocky CrowdComputer CrowdLang CrowdWeaver CrowdDB AskSheet Turkomatic CrowdForge CrowdSearcher

paradigm
imperative,

textual
imperative,

textual
imperative,

textual
imperative, visual

imperative,
visual

imperative,
visual

declarative declarative declarative configuration configuration

notation
JavaScript-

like
Scala Dog BPMN extension BPMN-like

custom
modeling
language

extended SQL
Google

Spreadsheet
formula

–

wizard for
config, Python

for custom
processes

wizard plus
adaptation rules

crowd
provider

MTurk MTurk self self, BPM engine MTurk CrowdFlower MTurk MTurk MTurk MTurk
MTurk,

Facebook

crowd
management

–
approvement
and rejection

profile-based
(expertise,

demographics,
groups)

preselection

profile-based
preselection

– –

approvement,
rejection,

bonus
payment

– – – –

machine
tasks

definition
script script script

generic Web
services

generic
machine

tasks

generic
machine tasks

SQL
operations

spreadsheet
functions

– –
data

management
operations

task
instantiation

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

sequential
execution

✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ ✓

parallel
execution

- - ✓ ✓ ✓ ✓ – ✓ ✓ ✓ ✓

decison
points

✓ ✓ ✓ ✓ ✓ – – ✓ – – ✓

looping /
iterative

execution
✓ ✓ ✓ ✓ ✓ – – – – – ✓

sub-process ✓ ✓ ✓ ✓ – – – – – ✓ –

data hosting data data data references data data data data data data data

data passing
among tasks

by value by value by value by reference by value data flow data flow by reference
self-managed

data flow
by value data flow

data splitting,
aggregating

script script script built-in built-in built-in
SQL

operations
spreadsheet

functions
by crowd by crowd built-in

task design manual pre-defined manual manual automatic wizard automatic wizard pre-defined manual wizard

task
deployment

automatic automatic automatic
automatic and

manual
automatic automatic automatic automatic automatic automatic automatic

voting
confidence

levels under
given budget

– custom logics –
control

questions,
consensus

consensus
rating,

consensus
voting voting consensus

open-
source

open-source –
open-source,

deployed online
– – – – – open-source deployed online

Task
support

Public availability

Development
support

Data
management

support

Quality control support

Control flow
support

Definition
language

Regarding data management, all platforms support the hosting of data, except CrowdComputer that only
manages data references. While this requires the crowdsourcer to manage the actual data himself, it
reduces data transfer and allows the crowdsourcer to protect data that is sensitive (e.g., images with
nudity) or subject to local regulations (e.g., healthcare data). CrowdLang and CrowdForge pass data by
value; CrowdComputer and AskSheet pass data by reference; the other approaches use direct data flows.
Data splitting and aggregating logics are either built-in operators, custom crowd tasks, or coded in the
underlying process definition language.

Development support for task design comes in different flavors: manual, automatic, wizard-based, or pre-
defined tasks. Manual design asks the crowdsourcer, for instance, to develop HTML-based Web forms
(CrowdComputer) or XML task definitions (CrowdForge). AutoMan is instead able to automatically
generate task user interfaces out of an SQL query and the affected table schemas. A wizard-based design is
proposed by CrowdSearcher, while Turkomatic and AutoMan are examples of platforms that support only
pre-defined text editing and voting tasks. Task deployment is generally automatic; CrowdComputer asks
the crowdsourcer to host task implementations, which may require also a manual intervention.

Also for quality control, four main approaches can be identified: rating (a crowd task is used to rate work
of another task); voting (a crowd task is used to collect preferences for results of another task); consensus
(new results are accepted until at least two or more results match); and control questions (extra
questions, for which the correct answer is known, are injected into a crowd task to evaluate a worker).
Automan stands out in this context: it allows the crowdsourcer to define an overall budget and a target
confidence level for the results and automatically manages the necessary pricing, approval and rejection
of tasks.

Digital Object Indentifier 10.1109/MIC.2015.96 1089-7801/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Internet Computing but has not yet been fully edited.
Some content may change prior to final publication.

6

As for the availability of the approaches, 4 out of 11 platforms are open-source projects, but only 2 are
actually deployed online and ready for use; 6 platforms are not available at all. In this respect, it
interesting to note that all the approaches are research prototypes. We are aware that companies like
CrowdFlower and Workfusion deploy and run crowdsourcing processes on behalf of their enterprise
customers at a daily basis. CrowdFlower Workflows, CrowdFlower’s internal platform for crowdsourcing
processes, is also available for enterprise customers; however, the commercial offering is still very limited,
if not inexistent. This may be an indication that the goals and effectiveness of platforms for crowdsourcing
processes are not yet clear and crisp enough for the market.

Discussion and outlook
The selection of crowdsourcing approaches discussed in this article shows that there already exists a
diverse and growing ecosystem of even sophisticated solutions. As usual with automation instruments,
their usefulness in practice is a trade-off between how often a process is repeated (e.g., to test different
crowdsourcing settings) and how easy it is to use the instrument (e.g., compared to manual
crowdsourcing). If not in their current form (stand-alone platforms), we however expect that – after the
initial prototypes introduced in this article – support for crowdsourcing processes will percolate into and
enhance existing crowdsourcing platforms, e.g., as is already happening with CrowdFlower Workflows.

We further discussed our analysis with Lukas Biewald, CEO of CrowdFlower (the company operates as
both crowd provider and crowdsourcer on behalf of its key customers), so as to jointly identify some of the
challenges the crowdsourcing community will have to approach next in order to foster tools for
crowdsourcing processes:

● Integration: The prevalence of proprietary notations for process definition risks to make
integration with other computing environments cumbersome. Especially the textual approaches
(except AutoMan: Scala) are hard to integrate into other programming environments; the same
holds for the visual approaches (except for CrowdComputer: BPMN) and the configuration-based
approaches. Only the declarative approaches seem well integrated into their host environments
(databases and spreadsheets). However, many of the surveyed approaches are equipped with APIs
that can be programmed and leveraged on for integration from the outside.

● Quality control: The supported techniques to control the quality of the results produced by the
crowd are still rather limited, and quality is controlled at the granularity of individual crowd tasks
only. More complex quality control logics (e.g., providing quality guarantees able to raise
exceptions and to dynamically compensate for low quality) or logics that control quality at the
granularity of entire crowdsourcing processes (e.g., able to maximize the quality of outputs while,
at the same time, keeping a given budget and time restrictions) still require more research.

● Adaptive process execution: Crowdsourcing usually requires a significant testing and fine-tuning
effort for both individual tasks and entire processes. Many times, processes are constructed by
running a task, analyzing its outputs, deciding whether a post-processing of the data is needed or
whether the next crowd task can be executed, etc. This, on the one hand, asks for novel testing
techniques for crowdsourcing processes and, on the other hand, for crowdsourcing processes that
can be started even if not yet completely defined and that can be refined at runtime, e.g., by
adding ad-hoc tasks or operations.

● Worker selection and training: The success of crowdsourcing depends first and foremost on the
quality of the work produced, and this, in turn, depends on the skills and abilities of the workers.
Not always is the solution selecting workers with the necessary skills, e.g., if a given skill or
domain knowledge is not present at all. A challenge for future crowdsourcing practice is therefore
understanding how to train workers for specific skills, how to motivate them to participate in
training, how to reward and certify training, and how to properly value training in the selection of
workers – all advanced crowd management aspects that will ask for effective answers.

Digital Object Indentifier 10.1109/MIC.2015.96 1089-7801/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Internet Computing but has not yet been fully edited.
Some content may change prior to final publication.

7

This survey is based on the analysis of research papers and hands-on tests of the available prototypes.
Acknowledging the limitations of this approach (the level of detail of papers, impossibility to access
prototypes, the pace of evolution), we intend to add a new section on crowdsourcing processes to the
“Crowdsourcing” entry in Wikipedia (https://en.wikipedia.org/wiki/Crowdsourcing), enabling everybody
to integrate and extend this analysis as a community effort.

Acknowledgements. We thank Lukas Biewald (CrowdFlower), Nicola Sambin (SpazioDati), Patrick
Minder and Abraham Bernstein (CrowdLang), Alexander J. Quinn (AskSheet), and Marco Brambilla
(CrowdSearcher) for their help.

References
1. J. Howe. “Crowdsourcing: Why the Power of the Crowd Is Driving the Future of Business,” Crown

Publishing Group, 2008.
2. S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar. “The Jabberwocky programming environment

for structured social computing,” UIST 2011, 53–64.
3. D. W. Barowy, C. Curtsinger, E. D. Berger and A. McGregor. “AutoMan: A Platform for

Integrating Human-based and Digital Computation,” OOPSLA 2012, 639–654.
4. M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh and R. Xin. “CrowdDB: Answering Queries

with Crowdsourcing,” SIGMOD 2011, 61–72.
5. A. Kittur, S. Khamkar, P. Andre and R. Kraut. “Crowdweaver: visually managing complex crowd

work,” CSCW 2012, 1033–1036.
6. A. Kittur, B. Smus, S. Khamkar and R. E. Kraut. “Crowdforge: crowdsourcing complex work,”

UIST 2011, 43–52.
7. A. Kulkarni, M. Can, and B. Hartmann. “Collaboratively crowdsourcing workflows with

turkomatic,” CSCW 2012, 1003–1012.
8. G. Little, L. B. Chilton, M. Goldman, and R. C. Miller. “Turkit: human computation algorithms on

Mechanical Turk,” UIST 2010, 57–66.
9. S. Tranquillini, F. Daniel, P. Kucherbaev and F. Casati. “Modeling, Enacting and Integrating

Custom Crowdsourcing Processes,” ACM Transactions on the WEB, 2015, conditionally accepted.
10. A. Bozzon, M. Brambilla, S. Ceri, A. Mauri and R. Volonterio. “Pattern-based specification of

crowdsourcing applications,” ICWE 2014, 218–235.
11. P. Minder, A. Bernstein. “CrowdLang - Programming Human Computation Systems,” WebSci

2012.
12. A. J. Quinn and B. B. Bederson. “AskSheet: efficient human computation for decision making

with spreadsheets,” CSCW 2014, 1456-1466.
13. Crowdsourcing Week. “2014 Global Crowdsourcing Pulsecheck: 1st Annual Survey Topline

Results,” http://www.slideshare.net/crowdsourcingweek/2014-global-crowdsourcing-
pulsecheck-1st-annual-survey-topline-results” (April 2015).

14. M. Marge, S. Banerjee, A. I. Rudnicky. “Using the Amazon Mechanical Turk for transcription of
spoken language,” ICASSP 2010, 5270-5273.

Digital Object Indentifier 10.1109/MIC.2015.96 1089-7801/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Internet Computing but has not yet been fully edited.
Some content may change prior to final publication.

8

Biographies

Pavel Kucherbaev is a PhD student in the Department of Information Engineering and Computer
Science at the University of Trento, Italy, and the European Institute of Technology Digital program.
His research focuses on quality control and timeliness of crowdsourcing micro-tasks. Pavel is also
interested in space exploration and entrepreneurship. Contact him at pavel.kucherbaev@unitn.it.

Florian Daniel is a senior research fellow at the University of Trento, Italy, and professor at the
Tomsk Polytechnic University, Russia. He received his PhD from Politecnico di Milano. His research
focuses on crowdsourcing, web engineering, mashups, service-oriented computing and business
process management. Florian is also passionate about running, mountains and beer brewing. Contact
him at florian.daniel@unitn.it.

Stefano Tranquillini is a post-doctoral researcher in the Department of Information Engineering
and Computer Science at the University of Trento, Italy, where he received his PhD. His main
research interests are in the area of business process management, crowdsourcing and the integration
of the two. He also plays futsal and is fond of photography. Contact him at
stefano.tranquillini@unitn.it.

Maurizio Marchese is an associate professor in the Department of Information Engineering and
Computer Science at the University of Trento, Italy, and a Director of Education in the European
Institute of Technology ICT Labs initiative for the Trento node. His main research interest are in
social informatics where he studies how information systems can realize social goals, apply social
concepts, and become sources of information relevant for social sciences and for analysis of social
phenomena. Contact him at maurizio.marchese@unitn.it.

Digital Object Indentifier 10.1109/MIC.2015.96 1089-7801/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Internet Computing but has not yet been fully edited.
Some content may change prior to final publication.

