
1. INTRODUCTION

Service composition encompasses all those processes that create added-value services,
called composite or aggregated services, from existing services. The need to integrate
services is recognized in both the enterprise and the consumer arenas [Bai et al. 2009].
A Gartner report stated that “through 2014, the act of composition will be a stronger
op-portunity to deliver value from software than the act of development” [Hill et al.
2010]. More recently the focus has shifted to more specific types of compositions: the
“Top 10 Strategic Technology Trends for 2014” Gartner report [Gartner 2013] confirms
the significance of composition of cloud services, and Forrester in its “2015 Predictions
for Application Development and Delivery Professionals” [Facemire et al. 2014]
highlights composition for mobile apps (i.e., assembling front-end components) as a
cornerstone to enhance development productivity, leveraging Web components and
platforms such as HTML5 and Google Polymer, a library for creating these
components.

Authors’ addresses: A. Lagares Lemos and B. Benatallah, School of Computer Science and Engineering
(CSE), University of New South Wales (UNSW), Sydney, NSW 2052, Australia; emails: alagares@gmail.com,
boualem@cse.unsw.edu.au; F. Daniel, Department of Information Engineering and Computer Science (DISI),
University of Trento, 38123 Povo (TN), Italy; email: daniel@disi.unitn.it.

Web Service Composition: A Survey of Techniques and
Tools

Angel Lagares Lemos (University of New South Wales), Florian Daniel (University of Trento), Boualem
Benatallah (University of New South Wales)

This is a post-peer-review, pre-copyedit version of the following article: LAngel Lagares Lemos, Florian Daniel, and Boualem Benatallah. 2015. Web service
composition: A survey of techniques and tools. ACM Comput. Surv. 48, 3, Article 33 (December 2015), 41 pages.
The final authenticated version is available online at: http://dx.doi.org/10.1145/2831270

Web services are a consolidated reality of the modern Web with tremendous, increasing impact on everyday
computing tasks. They turned the Web into the largest, most accepted, and most vivid distributed computing
platform ever. Yet, the use and integration of Web services into composite services or applications, which is a
highly sensible and conceptually non-trivial task, is still not unleashing its full magnitude of power. A
consolidated analysis framework that advances the fundamental understanding of Web service composi-tion
building blocks in terms of concepts, models, languages, productivity support techniques, and tools is
required. This framework is necessary to enable effective exploration, understanding, assessing, comparing,
and selecting service composition models, languages, techniques, platforms, and tools. This article estab-lishes
such a framework and reviews the state of the art in service composition from an unprecedented, holistic
perspective.

Categories and Subject Descriptors: H.3.5 [Online Information Services]: Web-based Services
General Terms: Methods, Techniques, Tools
Additional Key Words and Phrases: Web services, service composition, service oriented computing

This work is supported by SDA Project, Smart Services CRC, Australia, and the Faculty of Engineering at UNSW Australia.

Received June 2014; revised May 2015; accepted September 2015

http://dx.doi.org/10.1145/2831270

Service composition is a very active area of research and more than that, in many
cases there is research from the fields of workflows and software components that can
be leveraged [Dustdar and Schreiner 2005]. By bringing together Web services and
semantic Web technologies, the semantic Web services paradigm promises to make a
step forward in improving Web services composition through rich and machine under-
standable representations of service properties and capabilities, as well as reasoning
mechanisms to select and aggregate services [McIlraith et al. 2001].

Several variations of service description models, interaction protocols, and compo-
sition languages and techniques exist. Overall, on one hand mainstream composition
techniques focus mostly on application and data services. Composition logic typically
relies on procedural flow or scripting languages [Lau and Rana 2010]. The interaction
with component services is performed through low-level APIs and protocols. Interest-
ingly, current service composition environments rarely provide productivity support
tools similarly to those provided by modern Integrated Development Environments
(IDEs). For instance, IDEs support developers by providing code search, reuse,
debugging, generation, and so on. Like traditional programmers, service composers
would benefit from environments that bring together productivity techniques, such
as services discovery, reuse, code generation, documentation, integration with service
composition environments. Such environments may have different requirements in
terms of component models, interaction protocols, and orchestration constructs; for
example, cloud services orchestration requires coordination of hardware and software
resources across various layers. In addition to traditional control flow and dataflow
constructs, there is also a need for abstractions to support consistency across physical
and logical layers, exception handling, and flexible, efficient coordination, selection,
and scheduling of resources.

In this article, we propose an articulated framework for analyzing and comparing
Web service composition approaches. Previous work mostly focused on specific as-
pects of services engineering, including services discovery and quality of services (e.g.,
Garofalakis et al. [2004] and Mani and Nagarajan [2005]). Existing surveys addressing
Web services composition are mostly fragmented and lack a holistic view of the problem.
These surveys investigated specific composition aspects, such as usability, adaptability
and efficiency of the service composition mechanisms [Brønsted et al. 2007], dynamic
service composition (consisting of composing an application autonomously when a user
queries for an application at runtime) [Eid et al. 2008], process-based service composi-
tion languages [Van der Aalst et al. 2003], languages and models [ter Beek et al. 2006;
Milanovic and Malek 2004], Web mashups [Grammel and Storey 2010; Benslimane
et al. 2008], scientific workflows [Barker and Van Hemert 2008], life cycle [Pessoa et al.
2008], QoS of the composition [Strunk 2010], service description and interaction lan-
guages and protocols [Dustdar and Schreiner 2005], and semantic service composition
[Bartalos and Bieliková 2011]. Clearly, previous efforts by research and practitioner
communities have produced promising results that are certainly useful. However, a
more consolidated and holistic analysis framework that advances the fundamental un-
derstanding of Web service composition building blocks in terms of concepts, models,
languages, productivity support techniques, and tools is required. This framework is
necessary to enable effective exploration, understanding, assessing, comparing, and
selecting service composition models, languages, techniques, platforms, and tools.

The work presented in this article aims to create this understanding and analysis
framework. It provides an extensive survey of the main issues and solutions in Web
service composition. After introducing the necessary background on the core composi-
tion concerns (next section), we propose our framework for analyzing and comparing
service composition solutions (Section 3). The framework proposes a set of dimensions
(i.e., language, knowledge reuse, automation, tool support, execution platform and

Fig. 1. A composite application for the processing of book orders. In black and bold the activities of the
composition logic gluing together components.

target user), which we discuss in Sections 4–9. We then apply the framework to a selec-
tion of prominent service composition technologies and tools (Section 10) and provide
our conclusion and outlook in the last section.

2. COMPOSITION-BASED SOFTWARE DEVELOPMENT

The basic ingredient of any composite application are the software components (we use
the terms software component and component interchangeably). These encapsulate
functionality, data, and/or a user interface (UI), which can be reused, and provide a
set of operations, which allow one to programmatically interact with the encapsulated
functionality and/or UI. Examples of typical components we refer to are SOAP and
RESTful Web services.

2.1. Composition Concerns

Figure 1 illustrates the internals of a book order application leveraging on four compo-
nents. It allows us to describe the core concerns that must be addressed:

—Component access: Using different components requires mastering the different
component models and supporting their access mechanisms. That is, it may be nec-
essary to invoke operations, to send notifications, and to intercept events.

—Conversation management: A component may also be accompanied by a business
protocol [Alonso et al. 2004a], which is a specification that tells in which order the
operations of the component must be enacted, so as to establish a correct conversation
with the component. For instance, the Payment component in Figure 1 requires its
clients first to authenticate with the component (steps 1 and 2), then to initiate the
payment process (3), and then to wait for a completion event (4).

—Control flow: Composition activities can generally not be executed randomly; for
example, it does not make sense to invoke the Warehouse component in absence
of the ordered list of books. It is necessary to order composition activities, in order
to achieve a given objective. For example, after receiving an order the composition
in Figure 1 invokes immediately the Warehouse component, forming a so-called
sequence of invocations. Ordering activities may also require taking decisions on

which activity to perform next. For example, the “All books available?” check
either

starts the payment procedure or waits for the warehouse to confirm the availability
of all books, depending on the availability of the ordered books.

—Dataflow: In a composition, the input of one component is typically produced by
another component as output (if it is not provided by the composition logic itself). For
instance, the Warehouse component in Figure 1 requires a book list as input, which
is provided by the Book order component as output. Specifying how inputs derive
from outputs defines a so-called dataflow among components.

—Data transformation: Most of the times, outputs and inputs do not immediately
match, e.g., in terms of data formats or size. Propagating data from one component
to another may therefore require an intermediate data transformation step (e.g., re-
formatting, splitting or merging), so as to make components compatible. For instance,
the book list for the Warehouse component is a subset of the data produced by the
Book order component.

Addressing the above concerns for all components to be integrated produces a spec-
ification of how the composite application should behave. Next to these composition
features, developing a composite application may also require dealing with a set of
cross-cutting concerns, such as security and service level agreements.

2.2. Orchestration vs. Choreography

The composition example illustrated in Figure 1 specifically focuses on the internals
of the composite application and on the coordination of composition actions and com-
ponents. It does so from a centralized perspective, expressing how the composition has
to act, in order to integrate components. The result is an executable design of the
composite application called an orchestration [Peltz 2003].

Composite applications may be designed also by taking a distributed perspective,
in which the providers of the components participating in a composition jointly agree
on a common communication protocol for their components. The result is a contract
(the protocol) between the co-operating partners, which is not executable and must
be implemented inside of each component individually. This contract is commonly
known as choreography [Peltz 2003]. Choreographies are particularly useful in those
situations in which multiple parties have to collaborate, but none of them wants to take
the responsibility of running a centralized orchestration (e.g., in B2B transactions).

3. WEB SERVICE COMPOSITION TAXONOMY

The focus of this survey is on the composition of reusable software services, specifically
orchestrations. Also, despite the similarity with programming, we do not study here the
suitability of generic programming languages for developing composite applications.
Our center of attention is on all those approaches, languages and tools that propose
composition-specific development abstractions and solutions.

The service composition space delimited by these assumptions is still vast. To fa-
cilitate a focused analysis, we developed the taxonomy illustrated in Figure 2, which
proposes a holistic view on the problem of orchestration-based composition and aims
to highlight the key aspects and options one has to face when composing software.
The taxonomy is based on our own experience in Web services composition (e.g.,
Lagares Lemos et al. [2013] and Benatallah et al. [2003]), business process manage-
ment (e.g., Benatallah et al. [2004] and Daniel et al. [2009b]) and mashups (e.g., Daniel
et al. [2007]), as well as extensive literature review in related areas, discussions with
colleagues, experimentation with various systems and prototypes, which allowed us
to identify common building blocks for the different variations in services composition
systems.

Fig. 2. Web service composition taxonomy.

In the previous section, we discussed what developing a composition means. Our
taxonomy looks into how compositions can be developed, independently of technologies
or target composites, and into how the composition process can be assisted, so as to ease
development. Part of this problem requires also understanding who actually composes
software and which composition techniques or practices are suitable to which profile of
developer. Accordingly, we split the composition problem into six dimensions, which in
turn may be split into sub-dimensions:

—Composition language: This is the core dimension of our analysis. The language
decides how composition occurs, which composition activities are supported, and
how. Recalling Figure 1, the composition language is the formalism that allows one
to express the composition logic and to execute the composite application. Given
its crucial role in the composition process, we further split the language dimension
into sub-dimensions and look at the different components and target applications a
language may support, the specific notation and paradigm is adopts, as well as at
composition constructs and cross-cutting concerns.

—Knowledge reuse: Acknowledging the reuse-based nature of composition (the prac-
tice is based on the reuse of existing software components), we then analyze more
closely which composition artifacts exist that can be reused. The development of a
composite application may be non-trivial, and composition is not yet an as widespread
practice as one might think. Effective reuse—and the respective reuse techniques—
assumes, therefore, a special role in the context of composition.

—Automation: Thanks to the availability of dedicated composition languages, which
are characterized by a relatively limited set of composition constructs, and of reusable
components, which encapsulate most of the complexity of a composite application,
the decision space of composition is generally much smaller compared, for example,
to software development with generic programming languages. This observation has
inspired a set of automated composition approaches and model-driven composition
practices, whose roles and value is important to understand.

—Tool support: The previous three dimensions specifically analyze how a composite
application can be developed. Ideally, but not mandatorily, this process is supported
by a suitable development tool or integrated development environment (IDE), which
assists the developer throughout the whole development process with application-
independent infrastructure or functionalities.

—Execution platform: One of the key aspects of composition is how ready composite
applications are deployed and executed. Deployment can be supported through dif-
ferent options, easing or not the work of the developer (e.g., think at cloud computing
and the as-a-service paradigm). The execution can then be supported by different ex-
ecution engines characterized based their architectural design and the composition
languages that they support.

—Target users: Since composition approaches aim to simplify the development of
applications compared to generic programming, speculations on the skills necessary
to successfully compose an application have soon emerged. With this dimension, we
aim to understand which kinds of target users (ranging from professional developers
to end users) there are and which composition practices they are able to master.

We use the taxonomy in Figure 2 to structure the remainder of this article.

4. SERVICE COMPOSITION LANGUAGES

4.1. Components

We catalog six sub-dimensions, namely type, description, data format, interaction pro-
tocol, interaction style and selection, to characterize components. The type tells what

kind of functionality is provided, the description how it is advertised, the data format
indicates the language used for the representation of exchanged data, the interac-
tion protocol defines how services communicate, the interaction style expresses how
communications are initiated, and the selection tells when services are chosen for
composition.

4.1.1. Type. We identify three types of component depending on whether the compo-
nent acts as data source, provides access to application logic, or has a GUI.

—Data components consist of services that enclose a Web source in a given format (e.g.,
RDF+XML, RSS) with a defined data structure and (possibly) relationships between
the data elements. These components can be composed to form new services. Mashup
tools typically give the user the ability to compose data services (e.g., Yahoo! Pipes
supports the visual aggregation of different data sources) [Wang et al. 2009].

—Application logic components provide business functionality to other applications
[Srivastava and Koehler 2003], such as checking stock availability in a storehouse,
processing an online payment, or requesting the shipping of the goods. So-called
Business Process Management (BPM) suites provide the necessary functionality to
integrate application logic components to realizing given business goals [Papazoglou
2003]. Examples of such suites are Pega’s BPM,1 Bonita BPM,2 and Oracle BPM.3

—User interface components include content extracted from Web pages and UI widgets,
such as W3C widgets [Caceres 2012], Java portlets [Abdelnur and Hepper 2003],
or proprietary formats [Yu et al. 2007]. Typical UI widgets are login widgets, map
widgets, and search widgets. Composition of UI widgets typically occurs inside widget
containers or engines, which provide for the instantiation and rendering of widgets
and support basic infrastructure services (e.g., user management, persistent storage,
URL forwarding). Liferay4 is a portal for Java portlet integration; Apache Rave5 is
an engine for the integration of W3C and OpenSocial6 widgets, while Daniel et al.
[2009a] provide for the integration of the UI widgets proposed in Yu et al. [2007].

4.1.2. Interaction Protocol. SOAP and REST are the archetypical protocols in Web ser-
vices, and we also include OSGi as an emerging protocol that provides an alternative
to the common SOA approach.

—SOAP (formerly Simple Object Access Protocol) [Box et al. 2000] is a simple XML-
based communication protocol that permits the exchange of information via HTTP
and RPC. A SOAP service is operations-based, in that it exposes actions (the opera-
tions) performed by the Web service. Regarding the message format, SOAP defines
a standard message format for communication, describing how information should
be packaged into an XML document. Languages that support the composition of
SOAP-based Web services include BPEL and WS-CDL [Kavantzas et al. 2005].

—REST [Fielding 2000] (Representational State Transfer) is an architectural pattern
that exposes data and functionality through resources accessed via dedicated URLs
over HTTP. REST services feature a request-response pattern, where the HTTP
methods Post, Get, Put, and Delete on a given resource are mapped to the respective
CRUD operations Create, Read, Update, and Delete. Service responses contain the
representation of the requested resource presented in CSV, JSON, XML, or similar

1www.pega.com/bpm-suite.
2http://www.bonitasoft.com/.
3http://www.oracle.com/us/technologies/bpm/.
4http://www.liferay.com.
5http://rave.apache.org.
6http://opensocial.org.

.

http://www.pega.com/bpm-suite
http://www.bonitasoft.com/
http://www.oracle.com/us/technologies/bpm/
http://www.liferay.com
http://rave.apache.org
http://opensocial.org

formats. RESTful services composition has been realized in languages like JOpera
[Pautasso 2009a], which features a visual composition language, as well as in mashup
tools like SABRE [Maraikar et al. 2008], which enables the integration of RESTful
data sources. An attempt to enable the composition of RESTful services in BPEL is
the BPEL extension “BPEL for REST” [Pautasso 2009b].

—OSGi [Alliance 2014] (Open Services Gateway Initiative) is a specification that de-
fines a common and open architecture to develop, deploy and manage services inside
a Java Virtual Machine (JVM). It features a light service model that enables the
publication, binding, and association of services through a service registry. A ser-
vice is a normal Java object defined semantically by its service interface, which is
usually a Java interface. The data format is thus Java objects, and the examples of
languages, platforms, or tools for the composition of these kind of services are still
exiguous; examples are SOA platforms based on Service Component Architecture
(SCA) [Edwards 2011] such as Apache Tuscany,7 Fabric3,8 and Paremus.9

4.1.3. Description. We group the different ways of describing components into four
different lines: SOAP (WSDL, SSDL), REST (WADL, RAML, Swagger), Semantic WS
(OWL-S, WSDL-S, WSMO), and deployment descriptors.

—WSDL (Web Service Description Language) [Christensen et al. 2001] is an XML-
based specification for Web service description. It describes the operations that make
up a service, the messages exchanged by each operation, the parts that form each
message, and the protocol bindings.

—WADL/RAML/Swagger: WADL (Web Application Description Language) [Hadley
2006] is an XML-based description of HTTP-based applications (typically REST).
WADL describes a service as a set of resources and their relationships. RAML10

(RESTful API Modeling Language) is a YAML-based language for describing REST-
ful APIs. Swagger11 is a specification for describing RESTful Web services featuring
an “interactive” documentation that enables the production, consumption and visu-
alization of the REST APIs.

—OWL-S/WSDL-S/WSMO: OWL-S (Ontology Web Language for Services, formerly
DAML-S) [Martin et al. 2004] is an ontology that provides a standard vocabulary to
semantically describe services. It includes preconditions and (conditional) effects in
the description of the Web services, as well as enriched semantic representations of
Web service inputs and outputs [Martin et al. 2005]. Similar technologies are WSDL-
S (Web Service Semantics) [Akkiraju et al. 2005] and WSMO (Web Service Modeling
Ontology) [De Bruijn et al. 2005]. All these languages aim to enhance the discovery,
interoperability and composition of so-called Semantic Web Services.

—Deployment descriptors: For UI components that require local installation, descrip-
tors serve a twofold purpose: they both describe the interface of components and,
at the same time, also serve as deployment configurators. W3C widgets [Caceres
2012] contain a respective config.xml file, Java portlets [Abdelnur and Hepper 2003]
a portlet.xml file. Portlets accessible remotely via WRSP [Thompson 2008] are based
on common Web services and, hence, described using WSDL. Similarly, OSGi service
bundles [Alliance 2014] (JAR files that pack Java classes and resources) contain an
XML file with a deployment description, while OSGi services with remote access also
expose a corresponding WSDL description.

7http://tuscany.apache.org/.
8http://www.fabric3.org.
9https://paremus.com/.
10http://raml.org/.
11http://swagger.io/.

http://tuscany.apache.org/
http://www.fabric3.org
https://paremus.com/
http://raml.org/
http://swagger.io/

4.1.4. Data Format. We split the different message exchange formats used in Web ser-
vice composition in three categories:

—JSON (JavaScript Object Notation) is a lightweight data exchange format [Crockford
2006]. It is text-based and human-readable. It was designed to represent structured
data in the scripting language JavaScript, but today JSON is language-independent
and all major programming languages provide JSON parsers. JSON is simpler and
less verbose than XML (XML element has a name, and content is enclosed between
pairs of matching tags) [Bray et al. 1997]. However, XML has richer semantics, for
example, XML supports nodes of different kinds and different data types [Boyer
et al. 2011]. The majority of the Web service composition environments that support
RESTful services support JSON. For example, Drupal [Purer 2011], a Web framework
that permits the integration of APIs, provides a library to support JSON as a payload
format.

—RSS/Atom are both XML-based syndication formats for the exchange of Web feeds.
RSS [RSS Advisory Board 2009] and Atom [Nottingham and Sayre 2005] are used
to publish Web content that is regularly updated (e.g., blog posts and online news-
papers). A large number of mashup tools, recognized as one of the most relevant
Web 2.0 technologies, support the composition of RSS/Atom feeds [Beletski 2008].
Examples are Damia [Simmen et al. 2008] or Yahoo! Pipes.

—Java objects are instances of Java classes. OSGi, for instance, uses Java objects
as data exchange format in composition [Gruber et al. 2005]. Only few approach
focus on composition based on Java objects. Worth mentioning are Lee et al. [2014],
a framework for composing SOAP, Non-SOAP (e.g., OSGi) and Non-Web Services
[Diaz Redondo et al. 2007], and a BPEL-style solution to compose OSGi services.

4.1.5. Interaction Style. The mechanism supported by a component to communicate with
its clients determines the component’s interaction style.

—Pull: This style is used when the client explicitly invokes a Web service following a
request-response pattern. The communication is thus started by the client, and the
component cannot communicate with the client if there is no specific request. The
pull strategy is supported by most composition languages, including BPEL, which
has dedicated invoke and receive activities, and mashup tools, such as Yahoo! Pipes.

—Push: This style allows the Web service to communicate with a client even without
explicit requests, provided the client has registered/subscribed with the Web service.
The registration is necessary to inform the component about the client’s communi-
cation endpoint and about the events of interest (e.g., on change, on deletion). This
design pattern is known as publish-subscribe. The push strategy is infrequent in
Web service composition languages with REST-based APIs, since the REST protocol
requires the client to initiate the communication [Bozdag et al. 2007]. BPEL sup-
ports push interactions with the receive activity that can wait (listen) for incoming
messages and event handlers that can react to generic events triggered by partners.

—Business protocols: In addition to push or pull patterns, a business protocol specifies
order constraints for invocation sequences [Motahari Nezhad et al. 2007]. That is,
by means of a protocol a service provider establishes the rules of the conversation
between a service and its clients. For instance, it is typically necessary to add items to
a shopping cart before the order can be checked out or payed. For a service to be able
to properly manage multiple parallel conversations, it is necessary to implement
so-called message correlation rules, which allow the service to correlate incoming
messages with the respective conversation instances they refer to. For example, in
BPEL those rules are called correlation sets and are a set of properties that uniquely

identify a conversation [Daniel and Pernici 2006]. Web services that implement a
business protocol are known as stateful; otherwise, they are known as stateless.

4.1.6. Selection. This is the process of searching for and identifying concrete Web ser-
vices to be used in a composition, given a composition’s requirements. Component
selection may occur at three different stages of the service composition life cycle: de-
sign time, deployment time, and runtime. If services are bound to the process at design
time, the approach is called static composition; if they are are bound at deployment
time or runtime, the approach is called dynamic composition.

—Design time is the phase during which the developer builds the composite service.
The developer chooses the services once for all and, unless the composition is modi-
fied, the selected Web services are permanently bound to the service composition. A
representative of component selection at design time is SECE [Beltran et al. 2012], a
platform for context-aware service composition based on user-defined rules; in SECE,
a user builds a composition by selecting actions from a predefined set. The actions
represent predefined interactions with concrete Web services.

—Deployment time is the phase during which a composition is installed in the runtime
environment for execution. When the service composition platform enables the se-
lection of atomic services at deployment time, usually the composition developed at
design time is stored as a template that can be re-configured every time the composi-
tion is deployed. For instance, this occurs in a Service Creation Environment (SCE)
[Braem et al. 2006], which provides service composition templates that are defined as
abstract descriptions of reusable compositions containing placeholders for services.
At deployment time, a code generator binds service placeholders to concrete services.

—Runtime is the phase during which the service composition is executed. This kind
of selection, in the majority of the platforms or tools that implement this type of
selection, is based on algorithms that bind abstract services to concrete ones based
on Quality of Service (QoS) attributes such as price, execution duration, security,
availability, and reliability. For example, Zeng et al. [2003] propose a global plan-
ning approach to select services based on quality constraints and preferences. The
METEOR-S prototype [Verma et al. 2005] supports all the three types of selection.

4.2. Target Application

The types of systems and the domains service composition languages cater for are:

—Mashups are Web applications that aggregate existing Web resources, including data,
presentation and application functionality. Data and presentation typically come in
the form of standard data interchange formats such as XML and JSON, syndication
formats such as RSS or Atom feeds, or as HTML, ShockWave Flash (SWF), or other
graphical elements such as widgets. Application functionality is usually provided via
open, REST-inspired APIs developed in languages such as Ruby or JavaScript. The
most popular mashup tool today is Yahoo! Pipes [Chen et al. 2012], which aggregates
data sources. IBM InfoSphere MashupHub12 focuses on Enterprise Content Manage-
ment (ECM) and the integration of heterogeneous data sources (e.g., Web services,
databases, local files). JackBe Presto13 is a mashup platform for enterprise mashups
with a graphical editor based on the wiring paradigm. Enterprise Mashup Markup
Language (EMML) [Hinchcliffe and Benson 2011] is a domain-specific XML dialect
for mashups.

12http://www-03.ibm.com/software/products/us/en/mashuphub.
13http://jackbe.com/products/presto.

http://www-03.ibm.com/software/products/us/en/mashuphub
http://jackbe.com/products/presto

—Business processes: A business process is a set of activities, functional roles, and rela-
tionships that describe a function of the business that accomplishes a business goal
[Hollingsworth 1995]. Business Process Management Systems (BPMSs) support the
design, execution, and management of business processes [Van Der Aalst et al. 2003],
and represent a powerful instrument for business-to-business (B2B) integration. The
de facto standard process modeling language is BPMN [Group et al. 2004], whose
version 2.0 also has a 1:1 mapping to BPEL. Another relevant, high-level business
process language is Yet Another Workflow Language (YAWL) [Van Der Aalst and
Ter Hofstede 2005]. The founding efforts on using Web services to cope with B2B
integration include eFlow [Casati et al. 2000] and DySCo [Piccinelli et al. 2003].

—Scientific workflows: Scientific Workflow Management Systems (SWfMSs) rely on
domain-specific languages to enable scientists to effectively define, reuse, execute,
and monitor experiments and data analysis through the acts of composition and
orchestration. SWfMSs are mostly data-centric, which also implies that a majority of
SWfMSs opt for a dataflow-oriented composition approach with implicit control flow.
Triana [Taylor et al. 2007], Taverna [Hull et al. 2006], and Kepler [Ludäscher et al.
2006] are representative composition-based SWfMSs.

4.3. Notation

A composition language notation consists of the system of marks, signs, icons, or char-
acters that represent services, dataflow and control flow operators (vocabulary), the
rules for their combination (grammar), and their meaning (semantics). We have identi-
fied three classes of notations, that is, textual, visual, and hybrid (a combination of both
textual and visual). Textual and visual notations differ in the number of dimensions
they use; textual languages use one dimension to express a composite service (e.g., a
sequence of characters), and visual languages use more than one (e.g., including spatial
placement and graphical elements) [Burnett 1999].

4.3.1. Textual. We split the textual notations into three categories.

—XML-based: XML [Bray et al. 1997] is a markup language designed for the represen-
tation of structured data in a machine and human readable format. It is commonly
used for data exchange over the Internet, and several widely known standardized
languages are based on it (e.g., XSLT [Clark et al. 1999] and XQuery [Boag et al.
2002]). XML has been used largely to specify Web service composition languages. For
example, DAML-S [Ankolekar et al. 2002], WSFL [Leymann 2001], BPEL [Andrews
et al. 2003], and WSCI [Arkin et al. 2002] are all XML-based.

—Code-based notation entails the use of computer languages that are not XML-based,
they may be proprietary or based on currently existing textual computer languages.
For example, ql.io, a data mashup tool developed by eBay, permits the integration of
HTTP APIs by using a domain-specific language based on SQL and JSON.

—Controlled natural languages: These are languages whose vocabulary and grammar
are subsets of those of a natural language and are thus easier to learn and use than
programming languages [Wyner et al. 2010]. The “control” consists in the selection
of the supported vocabulary and grammar. For example, CoScripter [Leshed et al.
2008] allows the user to describe Web-based processes using instructions such as “go
to,” Aghaee and Pautasso [2012] propose EnglishMash for mashup development with
live preview, and Cremene et al. [2009] propose a language based on templates.

4.3.2. Visual. Visual Programming Languages (VPL) offer abstractions that hide tech-
nological details via visual symbols and graphical notations [Chignell et al. 2010]. The
aim is to effectively represent information and to ease understanding. Our analysis

Fig. 3. Representation of a BPEL process with control flow annotations.

has identified four types of visual representations, three of them represent individual
notations, the other one includes any combination of them.

—Spreadsheet-based approaches usually target end-user programmers [Lieberman
et al. 2006]. Examples of tabular notations in service composition are [Obrenović
and Gašević 2008] and Husky [Skrobo 2007]; the latter proposes a language where
cells encapsulate basic programming elements (e.g., a service invocation), and the
control flow is derived from the locations of the cells, where two events are sequential
if they are located in two adjacent cells (left to right).

—Diagram-based notations consist of symbols and connectors, where the symbols are
usually geometric shapes that represent an artifact of the composition, and connec-
tors are wires or arrows that represent the control flow or dataflow or a relationship
between the artifacts. For instance, JOpera [Pautasso and Alonso 2005] uses flow
graphs for both dataflow and control flow specification (Figure 3 shows a control
flow diagram). Mashup tools that apply flow diagrams are JackBe Presto and Yahoo!
Pipes, but diagrammatic representations of flow diagrams can be found in scien-
tific workflows as well. For instance, Kepler [Ludäscher et al. 2006] uses icons to
represent discrete computational components and arrows to represent dataflows.
Other diagram types used for service composition are state charts [Zeng et al. 2003],
Petri nets [Hamadi and Benatallah 2003], and UML activity diagrams [Skogan et al.
2004].

—Other metaphors include visual notations that use other representations of real ob-
jects or situations easily recognizable by users. Used metaphors include, for example,
storyboards [Soriano et al. 2008] and jigsaws [Danado and Paternò 2012].

4.3.3. Hybrid. Hybrid notations are a combination of the previous notations. For in-
stance, Vegemite [Lin et al. 2009] is a mashup tool that extends CoScripter with a
spreadsheet-like environment called VegeTable. The result is a script-based, textual
and a spreadsheet-based, visual notation.

4.4. Paradigm

A language paradigm is an approach of programming based on a coherent set of princi-
ples and practices, which determine the suitability of the language for solving certain
types of problems [Van Roy 2009]. The service composition tools proposed so far cover
a variety of paradigms, which we categorize into six classes.

4.4.1. Script-Based. Scripting languages (e.g., Perl [Wall et al. 2000]) are interpreted
(not compiled) and typically serve well-defined, domain-specific purposes [Loukissas
2003]. Scripting languages are often of low complexity and, therefore, potentially
suitable also to casual users (who, however, still have to learn a programming lan-
guage). This paradigm has been applied to service composition in different areas, for

example, in the areas of mashups [Sabbouh et al. 2007] and workflows, where scripting
languages like Swift [Wilde et al. 2011] enable the specification of scientific workflows.

4.4.2. Flow-Based. This paradigm specifies programs as networks of processes that
are connected in a directed acyclic graph. This approach is commonly used in service
composition, as the processes in these kinds of languages are “black boxes,” for example,
the Web services, which provide a functionality to remote clients without exposing their
internals. The common constructs in the case of service composition are control flow and
dataflow connectors. Yahoo! Pipes is an example of a dataflow-based approach, whose
graphical modeling language has connectors that define the data passing between
processes. Also BPEL is flow-based, however, with a focus on control flow.

4.4.3. Functional. Functional languages are based on the construct of mathematical
functions. Programs are defined as functions, whose evaluation represents the output
of the program. Functions are side-effect-free and stateless in that the result of a func-
tion depends exclusively on its inputs, reason why this paradigm is considered purely
data-oriented. The paradigm is highly exploited in scientific workflows, where the par-
allelization of computations is important, a feature that is facilitated by Web services
modeled as functions without ordering constraints. The representation of services as
functions is valid for services that are stateless and side-effect–free [Tan et al. 2010].
A functional language is, for example, used in the mashup tool MashMaker [Ennals
and Gay 2007]. It is, however, worth noting that functional programming in service
composition does typically not comply completely with the pure functional program-
ming paradigm [Hudak 1989], as pure functional programming has some practical
limitations (e.g., it does not permit I/O operations).

4.4.4. Rule-Based. Rule-based programming systems consist of facts, rules, and con-
trol strategies. Facts and rules are the knowledge of the system. Facts are the infor-
mation (i.e., statements and relationships), and rules are condition-action expressions
transforming facts. Control strategies resolve conflicts if conflicting rules are trig-
gered. Rule-based systems are highly modular: they can be broken down into parts,
solved separately, and integrated afterward [Mohan 2000]. For example, Orriëns et al.
[2003b] use business rules specific to service composition life-cycle phases (e.g., data
rules, constraint rules, exception rules) to drive a service composition process; SWORD
[Ponnekanti and Fox 2002], a developer toolkit for Web service composition, represents
services as rules that transform inputs (condition) into outputs (action) and is able to
determine whether a desired composite service, specified by means of facts and rules,
can be realized using a set of given services or not.

4.4.5. ECA-Based. Event-driven systems have been used to support interactions in
several classes of loosely coupled and dynamic applications [Russell et al. 2006]. More
specifically, Event Condition Action (ECA) rules have been used to encode the logic
of composite services in function of runtime events instead of facts in a knowledge
base. ECA rules are especially attractive to support the customization of composite
services, as rules can easily be added, modified, or removed to reflect new requirements.
Although apparently similar to rule-based approaches, ECA-based compositions are not
easily amenable to systematic reasoning, such as property verification, as they lack the
necessary knowledge base.

4.4.6. Query-Based. Query languages are designed for the processing of data (i.e., re-
trieve, insert, modify, delete) at a high level of abstraction. The quintessential, query-
based language is the Structured Query Language (SQL) [Chamberlin and Boyce 1974].
Query languages are categorized depending of the artifact they query for; for instance,
SQL and OQL [Alashqur et al. 1989] are database query languages, XSLT and XQuery

are XML query languages, and SPARQL is a graph query language. Various are the ex-
amples of query languages applied to the composition of services: XQSE [Borkar et al.
2008], based on XQuery, integrates data services in the AquaLogic platform [Carey
2006]; XL [Florescu et al. 2002] integrates Web services into XML documents; and
ql.io14 is an SQL-based language to fetch data from services.

4.5. Composition Constructs

Composition constructs are the building blocks that enable the aggregation of Web
services. The constructs supported by a language are an objective measure of the ex-
pressiveness of the language. There are two essential types of composition constructs in
service composition, that is, control flow constructs (for process-oriented compositions)
and dataflow constructs (for data-oriented compositions) [Fensel and Bussler 2002].
Other types of constructs we consider are data transformations.

4.5.1. Control Flow Patterns. The specification of a control flow is based on control flow
constructs that represent communications with atomic services and specify the execu-
tion order of communications [Tran et al. 2008]. Communication primitives typically
define a single interaction between a process and an atomic Web service. For exam-
ple, communication primitives of BPEL are invoke, receive, wait, and reply. The order
of execution of services is determined by control flow constructs that allow the im-
plementation of basic and advanced control flow patterns. This dichotomy has been
consistently applied in the literature (e.g., van Der Aalst et al. [2003]), and there is a
wide consensus about which category each control flow pattern belongs to: basic control
flow patterns are sequence, parallel split, synchronization, exclusive choice, and simple
merge; advanced control flow patterns include multi-choice, loops, and similar.

Figure 3 represents a BPEL process that uses six control flow constructs: (i) se-
quences partially order activities, (ii) receive indicates that the process expects an in-
coming message (a loan request), (iii) exclusive-choice represents a conditional branch
where only one path is executed (the path taken depends on the amount of the loan re-
quested), (iv) invoke calls services (this construct is used to invoke the two Web services
“LoanApproverWS” and “LoanAssesorWS”), (v) simple-merge joins alternative
branches into a single branch, and (vi) reply sends a message in response to a received
message (it sends the reply to the actual loan request).

4.5.2. Dataflow Patterns. A dataflow defines how data are passed among Web services
in terms of the actions performed on the output of a service that is transferred as input
to another service [Rahm and Bernstein 2001]. Every composition language, either by
graphically wiring outputs to inputs (e.g., in Yahoo! Pipes) or via textual expressions
(e.g., in BPEL), supports the specification of dataflow. Dataflow constructs commonly
perform actions such as copying data (mapping), organizing data based on certain
criteria (sorting), and combining data (merging).

There exist two basic data passing paradigms: blackboard and explicit dataflows
[Alonso et al. 2004a]. The blackboard paradigm stores data centrally in shared vari-
ables that are used as sources and targets by Web service activities. Several service
composition languages follow this paradigm, among them BPEL. The explicit dataflow
paradigm makes dataflows an integral part of the composition model by means of
dataflow connectors. A dataflow connector describes how data is manipulated and
routed to or from Web services.

4.5.3. Data Transformation Capabilities. The instructions specified in the dataflow
may include data manipulations. In order to ensure the data exchange between

14http://ql.io.

http://ql.io

heterogeneous Web services, that is, with mismatching output and input data for-
mats, suitable data transformation constructs may be needed. Typically, transforma-
tions take valid data under one schema and convert them to valid data under another
schema [Pessoa et al. 2008]. The data transformation capabilities we identified are
either ad-hoc transformations or based on dedicated transformation languages.

—Ad-hoc transformations are based on dedicated data transformation constructs pro-
vided by the composition language. For example, BioFlow [Jamil et al. 2010], a
declarative language for scientific workflows, extends SQL with specific statements
for the transformation/integration of XML data. Asavametha et al. [2011] propose
the use of Topes [Scaffidi et al. 2008], a transformation language for strings able to
reformat strings passed between services. Active XML [Abiteboul et al. 2004] is a
framework for the integration of data by means of service calls embedded in XML
documents.

—Transformation languages require the service composition language to embed data
transformation languages or even generic programming languages, which are able to
perform data transformations. Typically, composition languages that support the use
of transformation languages support the invocation of XPath functions or external
XSLT stylesheets (e.g., JOpera, BPEL). Examples of composition languages that
allow the use of code snippets in generic programming languages include workflow
languages such as Taverna [Hull et al. 2006] (Java) and Kepler (Java and Perl).

4.6. Crosscutting Concerns

Service composition comes with a number of crosscutting concerns that can be sup-
ported by the infrastructure and do not depend on any individual composition. In the
following, we overview the most important crosscutting concerns in service composi-
tion, that is, exceptions, transactions, security, and Service Level Agreements (SLAs).

4.6.1. Exceptions. Exceptions are anomalous behaviors that occur during the enact-
ment of the process defined by a composite service. They are caused by unresponsive
Web services, unavailable services, unexpected messages from a Web service, and sim-
ilar; Chan et al. [2009] provide an extensive analysis of causes for faults in service
composition. Exception handling permits the composite service to detect failures and
to take corrective actions [Alonso et al. 2004b; Gutierrez-Garcia and Ramos-Corchado
2011]. For instance, BPEL fault handlers permit one to catch faults, throw events, and
compensate faults. JOpera [Pautasso and Alonso 2005] supports exception handling
via visual constructs added to the control flow graph. In particular, the behavior of
the process in case of exception is defined by adding connectors to a task (e.g., a Web
service invocation) that are fired in case of failure of the task. In AO4BPEL [Charfi and
Mezini 2004] and Dynamo [Baresi et al. 2007], Aspect-Oriented Programming (AOP) is
proposed to supervise and handle exceptions in BPEL processes. An approach to handle
exceptions via an extended Petri net model is explained in Hamadi et al. [2008].

4.6.2. Transactions. A transaction is a group of Web service interactions that achieve a
logic (sub-)goal within a service composition only if all interactions complete success-
fully [Bernstein and Newcomer 2009]. For example, a stock broker application may be
composed of one Web service that withdraws money from the customer’s bank account
and one that deposits the money in the broker’s bank account. The two actions must
be grouped into a transaction, since both services must succeed for the bank transfer
to be correct. If an error occurs in a transactions, the actions of the transactions that
have already been performed must be compensated, that is, rolled back until the status
right before the transaction started. BPEL supports compensation handling via com-
pensation actions and is typically used in conjunction with WS-Transaction [Cabrera

.

et al. 2002] and WS-Coordination [Cabrera et al. 2004], which empower BPEL with
distributed coordination capabilities. Also BPMN defines sub-processes that can be
associated with compensation events.

4.6.3. Security. The use of Web services implies the crossing of trust boundaries and
the involvement of software of uncertain reliability, which asks for the mitigation of
risks. The security mechanisms that aim to mitigate risks are applied at four different
levels in an SOA, namely user, message, service, and transport.

At the user level, the goal is to verify the users’ identity and to control access to
resources (i.e., services, operations), which is achieved via two techniques: authentica-
tion and authorization. Authentication assures the truthfulness of a user’s identity. For
instance, OpenID [Recordon and Reed 2006] is an open, decentralized, single sign-on
standard for user authentication. Authorization is the process of granting the authen-
ticated user access rights to read or write requested resources. Common standards to
provide access control in SOAs are WS-Security [Nadalin et al. 2004] for SOAP Web
services and OAuth [Hardt 2012] for REST APIs [Prehofer et al. 2010]. A standard
that includes identification, verification, and access control is the Security Assertions
Markup Language (SAML) [Ragouzis et al. 2008].

At the message level, the goal is to assure confidentiality and integrity. In order to
assure confidentiality, the message must be encrypted. In the case of XML-formatted
messages, the W3C proposes for instance the use of XML-Encryption [Imamura et al.
2002]. Data integrity can be achieved by adding data integrity fields, such as checksums
[Finkenzeller 2003] or by using the XML-Signature specification [Imamura et al. 2002].
The WS-Security standard provides data confidentiality and integrity, as it includes
the XML-Encryption and XML-Signature specifications.

At the service level, the objective is to ensure the availability and correct functioning
of a service. Such must be protected from threads and attacks that may affect the
service itself or one of the systems or resources required for its functioning. The major-
ity of attacks belong to the category Denial of Service (DoS) [Needham 1994] and are
prevented via mechanisms like intrusion detection, XML filtering controls, and spe-
cialized XML gateways/firewalls [Tipnis and Lomelli 2009]. WS-Security Policy, based
on WS-Policy [Vedamuthu et al. 2007], permits the specification of security policies
(i.e., requirements and capabilities) by the service provider, which is also of help in the
prevention of attacks. Specific attacks to service compositions in BPEL are typically
fended by detecting semantically invalid requests (attack messages) or by using fire-
walls. A detailed list of Web service attacks including service composition attacks can
be found in Jensen et al. [2007].

At the transport level, the goal is to guarantee a seamless and reliable communication
between parties. The protocols and specifications at this level provide mechanisms that
cope not only with transport threads but also with service, message, and identity risks
as well. One of the most popular approaches in this respect is the Transport Layer
Security protocol [Dierks 2008] (TLS, formerly known as SSL), a cryptographic protocol
used to secure connections over the Internet that provides privacy, authentication, and
reliability. It is also worth mentioning Hypertext Transfer Protocol Secure (HTTPS),
which is a protocol at the application layer that makes use of SSL/TLS to transfer
sensitive data. The use of HTTPS is very common in RESTful APIs to secure the
communication and to prevent eavesdropping attacks (e.g., man-in-the-middle).

4.6.4. SLAs and QoS. SLAs [Lamanna et al. 2003] are contractual obligations that
describe the mutual responsibilities between a service consumer and a service provider.
The core of the contract is the service guarantees. It includes functional and non-
functional aspects. The functional aspects define what the service is expected to deliver
(e.g., operations and outcomes). The non-functional aspects define QoS guarantees (e.g.,

regarding availability, price, response time, or throughput) [Kritikos et al. 2013]. An
SLA usually also contains clauses that define business rules, such as restrictions,
penalties, resolution of disputes, and payments [Yan et al. 2007]. A standard protocol
for the specification of SLAs is WS-Agreement [Andrieux et al. 2004]. Yan et al. [2007]
use agents to negotiate QoS constraints with providers to dynamically select services in
a composition. Canfora et al. [2005] present a QoS-aware service composition approach
based on genetic algorithms.

5. KNOWLEDGE REUSE

Composition-based productivity is not only achieved through suitable composition mod-
els and languages, but also through reuse. In fact, reuse may lower development times
and increase software quality. In this respect, the reused artifact (what) and the adopted
reuse technique (how) are of particular importance.

5.1. Reused Artifact

An artifact is a logical entity of a service composition, for example, a single element like
a component or a data transformation rule or multiple related elements, in which case
we distinguish so-called process fragments from complete examples of ready processes.

5.1.1. Components. Components enable the reuse of data, application logic, or UIs. The
reuse of Web services includes the reuse of both atomic and composite Web services, as
the later are the same as the former from the user’s point of view from the moment they
are encapsulated and published. Service reusability is one of the founding principles
of SOA, and the reuse of services is the essence of service composition.

5.1.2. Data Transformation Rules. Data integration in service composition is one of the
most time consuming and tedious tasks. The reuse of rules defined for the transforma-
tion of data may thus significantly decrease the effort of this task. Data transformation
rules are expressions that permit the manipulation of the data. They comprise two
main elements: transformation functions and data sources. An example of transforma-
tion rules in service composition can be found in Thöne et al. [2003], where the authors
propose a UML-based service composition language called UML-WSC that features
graphical constructs to represent data sources and transformation rules (mappings).

5.1.3. Process Fragments. Process fragments are coarse-grained units of composition
logic [Schumm et al. 2012]. Their reuse requires that the fragments are self-contained
and coherent; hence, they must be meaningful and have a clear functionality even
when they are not integrated in any service composition [Markovic and Pereira 2008].

A widely used representation of process fragments consists of modeling them in an
abstract manner, aiming to cover a wide range of processes where the fragments can
be reused. This representation has been realized mainly through the application of
templates, where a template is a specification of a service composition fragment with
abstract placeholders expressed in a concrete language. When a template is used to
model a composite service placeholders must be manually or automatically concretized,
in order to configure the template to be included in the service composition; this process
is called template instantiation [Volpano and Kieburtz 1985]. An illustrative example
of reusing service composition fragments based on templates is Geebelen et al. [2008],
a framework for the design of BPEL processes that includes a library of templates
that can be integrated in a composition. Process/composition fragments have also been
used in the context of mashups: MatchUp [Greenshpan et al. 2009] supports the auto-
completion of mashups via so-called mashlets (e.g., data source components) or glue
patterns (pieces of integration logic for mashlets). Roy Chowdhury et al. [2011] pro-
pose the reuse of more complex fragments, all equipped with suitable data mappings

and component gluing logics. VisComplete [Koop 2008], a system for developing visu-
alization pipelines, proposes the use of so-called partial completions, that is, sets of
structural changes that complete a given partial visualization pipeline, so as to reflect
the structure of pipelines contained in a collection of existing pipelines.

5.1.4. Examples. The reuse of examples in Web service composition consists in using
previously designed compositions and adjusting them to new requirements. The main
differences with the previous artifacts is the concreteness and completeness of the
examples: while all artifacts mentioned above were based on reusing parts of processes
(e.g., components or fragments) or on reusing abstract artifacts such as templates,
examples are concrete and complete processes. They are full-fledged solutions to specific
problems and are not generalized or abstracted. Their reuse requires therefore to
manually adapt (edit) the example to the new requirements. For instance, Yahoo! Pipes
enables reuse of examples by means of cloning (see Section 5.2.3).

5.2. Reuse Technique

Given an artifact to be reused, it is important to understand how it can be reused in
practice. In this respect, our study identified a varied set of techniques (in Appendix A
we discuss how developers can help each other to reuse knowledge).

5.2.1. Search and Discovery. This is the activity performed by the developer when he
expresses requirements or constraints the target artifact should satisfy as a query.

—Keyword search looks for artifacts that present a specific term (the keyword) in any of
the attributes of the artifact (e.g., description, name, tags) [Rajasekaran et al. 2005].
Keyword search has been largely applied to discover Web services [Bachlechner et al.
2006]. For instance, UDDI [Bellwood et al. 2002], the standard for publishing and
finding Web service descriptions, or myExperiment [Goble et al. 2010], a repository
of scientific workflows, support keyword search.

—Semi-structured search makes also use of matchmaking based on subsumption and
equivalence relationships. Matchmaking techniques have been applied to semantic
services, most of them based on the pioneering work of Paolucci et al. [2002]. In
service composition, for instance, IPM-PQL [Choi et al. 2007] is a semi-structured
XML-based process query language that allows the user to query a registry us-
ing context (e.g., actors, resources), structure (e.g., activities), and/or classifications
(categories).

—Relational query languages are specialized in the extraction of information from
relational databases, among them SQL stands out as the de facto standard [Leavitt
2010]. An example of Web service registry that supports relational search via a
subset of SQL is ebXML Registry Services [ebXML Registry Technical Committee
et al. 2002]. With a completely different purpose, a relational query language is used
in Yahoo Query Language (YQL).15 Through its Web service interface, it permits
access and manipulation of data from the Internet (e.g., Yahoo! Pipes models) by
using SQL-like commands.

—Graph-structured search supports querying graph-structured data (e.g., RDF) us-
ing graph query languages. For instance, SPARQL is used in registries like iServe
[Pedrinaci et al. 2010], an open repository that exposes service descriptions as Linked
Data [Bizer et al. 2009]. Examples of visual graph query languages in service compo-
sition are BPMN-Q [Awad 2007], designed for querying BPMN diagrams, and BP-QL
[Beeri et al. 2008], focused on the elements and structure of BPEL descriptions.

15developer.yahoo.com/yql/.

http://developer.yahoo.com/yql/

5.2.2. Copy/Paste. It is the ability of selecting a service composition artifact from one
location (e.g., a repository, a service composition tool) and inserting a copy of it into
another location. Copy/paste is supported by all the service composition tools that
adopt textual notations, whereas for visual notations, it is more complex to imple-
ment. Intalio—BPMS Process Designer,16 for instance, supports copy/paste of BPMN
diagrams (tasks, events, gateways), including their characteristics and dataflow speci-
fications.

5.2.3. Cloning. This is the act of creating a replica of an existing service composition
(use as example), so as to adapt it and extend it with new constructs to meet new
needs. The implementation of this technique is generally simple and available in the
great majority of service composition tools that support saving/opening compositions
and sharing them with the community. Cloning is, for example, highly used in Yahoo!
Pipes. Stolee et al. [2011] specifically study this practice, examined approximately one
third of the pipes in the Yahoo! Pipes repository, and found that over 54% of the pipes
had been cloned at least once.

5.2.4. Recommendation. Recommending artifacts means pro-actively suggesting arti-
facts that may facilitate the composition process. Recommendations typically come
from so-called recommender systems, which suggest information of likely interest to a
user based on profiles, usage histories, and usage context [Resnick and Varian 1997].
Manikrao and Prabhakar [2005], for example, suggest Web services based on users’
ratings of Web services. In the context of mashups, the MatchUp project [Greenshpan
et al. 2009] recommends mashup fragments based on partial matching of mashup struc-
tures. A similar approach is proposed by Roy Chowdhury et al. [2011], who recommend
composition patterns in a visual mashup development environment by performing on-
the-fly similarity search over a knowledge base of reusable patterns. Mashup Advisor
[Elmeleegy et al. 2008] uses artificial intelligence to provide recommendations in IBM
Lotus Mashup Maker. VisComplete [Koop 2008] uses graph similarity and data mining
to provide support for completing visualization pipelines based on information obtained
from a repository of existing pipelines represented as graphs.

6. AUTOMATION

Service composition is a complex task that has inspired a variety of automation tech-
niques trying to overcome some of the complexity. We identified three automation
techniques of major importance: synthesis, planning, and model-driven development.

6.1. Synthesis

The synthesis of Web service compositions interprets Web services as state transition
systems modeling the services’ business protocol, taking into account that services
are generally non-deterministic (the occurrence of transitions cannot be foreseen in
advance) and stateful (the occurrence of a given transition depends on past transitions)
[Fiadeiro et al. 2007]. The goal of synthesis is to identify an orchestrator that integrates
all necessary services to mimic a given target behavior expressed again as a state
transition system [Lämmermann 2002]. The problem is complicated and may require
the use of complex control flow and dataflow dependencies [Marconi and Pistore 2009].

The most widely used approach to service composition synthesis is the so-called Ro-
man Model [Calvanese et al. 2008]. Service composition in this approach is achieved
by synthesizing an orchestrator (an implementation of service orchestration logic) that
realizes the target service using fragments of the available services. The techniques
proposed to synthesize the orchestrator are diverse. The first approaches reduced

16http://www.intalio.com/products/bpms.

http://www.intalio.com/products/bpms

the problem to Proportional Dynamic Logic (PDL) [Berardi et al. 2005], more recent
approaches applied Linear Time Logic (LTL) [Piterman et al. 2006] and simulation
[Berardi et al. 2008]. Pistore et al. [2005] use symbolic model checking to generate an
executable BPEL process, starting from an abstract description of component services
in BPEL and a set of requirements and constraints of the target service composition
expressed in Eagle [Lago et al. 2002].

6.2. Planning

Planning, which is a branch of Artificial Intelligence (AI) [Rao et al. 2006] uses se-
mantic Web services with machine-understandable descriptions of service properties
and capabilities and reasoning mechanisms to select and aggregate services [McIlraith
et al. 2001]. Semantic Web services are rich and machine-understandable descriptions
of service properties and capabilities [McIlraith et al. 2001]. Semantic Web services
consist of a formal invocation, pre- and post-conditions, and semantic input/output
descriptions, which enable automatic composition. Examples of planning-based com-
position techniques are Hierarchical Task Networks (HTNs) [Erol et al. 1994], situation
calculus [Levesque et al. 1998], rule-based reasoning [Buchanan and Shortliffe 1984],
and the Planning Domain Definition Language (PDDL) [McDermott et al. 1998].

SHOP2 [Sirin et al. 2004] represents services as actions and applies task decomposi-
tion in HTN planning to DAML-S based services. McIlraith and Son [2002] leverage on
Golog (a high-level logic programming language for dynamic domains, with control con-
structs, support for non-deterministic choices and user constraints to enable automatic
composition) extensions [Levesque et al. 1997] to support planning-based composition.
A rule-based planning approach is proposed in Medjahed et al. [2003], and a rule-based
planner is adopted in SWORD [Ponnekanti and Fox 2002] (see Section 4.4.4). Redavid
et al. [2008] use Semantic Web Rule Language (SWRL) rules to generate candidate ser-
vice compositions, starting from a given target service (the goal). Cugola et al. [2012]
propose a declarative, logic-like language to model service orchestrations called DSOL
associated with an ad-hoc engine that uses planning to support self-adaptive service
compositions at runtime. Kubczak et al. [2009] propose the synthesis of mashups using
a planning-based approach.

6.3. Model-Driven Development

Model-driven development is practice that aims to alleviate the developer from low-
level coding and to reason at a high level of abstraction, typically by drawing a model
of the target application. Coding is automated (at least partially) by generating code
implementing the functionalities expressed in the model. Automation thus comes in
the form of reused schematic and recurrent code fragments, which, in the context of
service composition, either express composition logic or data transformations.

6.3.1. Composition Logic. Model-driven approaches for service composition provide log-
ical constructs, such as services, service invocations, dataflows, control flows, and simi-
lar, that are technology agnostic. Models can then be translated into executable service
composition languages without human intervention [De Castro et al. 2006]. Orriëns
et al. [2003a], for example, use UML to describe compositions and the OCL to define
business rules. Similarly, a large body of research has adopted UML for the design of
Web service compositions [Gardner 2003; Sheng and Benatallah 2005; Caceres et al.
2003; Skogan et al. 2004; Mayer et al. 2008]. However, UML it is not the only option.
For example, Baina et al. [2004] explain the generation of BPEL skeletons from two
models: a state machine model for the specification of Web service conversations and
a state chart for the composition. Manolescu et al. [2005] leverage on the Web Mod-
eling Language (WebML [Ceri et al. 2002]) for the model-driven development of Web

applications and Web service orchestrations. The recent trend is to use BPMN for
service composition [Group et al. 2004].

6.3.2. Data Transformation. Specifying data transformation rules (see Section 4.5.3)
manually can be a non-trivial and tedious task. Model-driven engineering permits the
automation of transformation rules implementation. The use of models permits to raise
the level of abstraction enabling a better management of complex tasks; and, in addi-
tion, for data transformation, permits to encompass different schema types (e.g., XML,
relational) under the same representation. For instance, Jouault et al. [2008] provide a
modeling notation to express semantic correspondences between model elements and
an automated data mapping rules generation process based on model transformation
languages. Bernstein and Melnik [2007] propose a model management system that
defines operations for the manipulation of models and operations that describe data
mappings between source and target schemas. Avazpour et al. [2013], instead, pro-
pose a tool that automatically generates mappings between source and target models
starting from examples of existing mappings.

7. TOOL SUPPORT

Other software tools may provide developers with productivity support, such as version-
ing, debugging, testing, and refactoring. However, we have found that only refactoring
and versioning have been addressed so far.

7.1. Refactoring

Refactoring aims to systematically improve how a service composition has been imple-
mented without altering its functionality [Fowler 1999]. Service-based systems, spe-
cially when they are business oriented, require continuous changes. A good design of
services is essential to ensure that they can be easily updated. However, the design of a
service frequently suffers modifications, and refactoring techniques may make sure the
design stays good as development goes on [Krogdahl et al. 2005]. Visual refactoring is
one of the features provided by JOpera [Pautasso 2005]. This technique supports refac-
toring operations such as renaming, extraction, and inlining of composition fragments,
and synchronization of service interface modifications. Stolee and Elbaum [2011] found
out that 81% of the mashups developed with Yahoo! Pipes contained deficiencies and
proposed an automatic identification and resolution of such deficiencies by the appli-
cation of refactoring techniques consisting of customized graph transformations.

7.2. Versioning

Service composition systems should integrate versioning techniques, such as version
control tools, to track the evolution of the services and to guarantee that the different
versions of published services can be used by third parties unproblematically [Gold
et al. 2004]. An approach to versioning in SOA is presented Leitner et al. [2008], which
studies the possible changes of WSDL services and propose an approach to versioning
them using service version graphs and selection strategies. More relevant to service
composition is the work in Joeris and Herzog [1999], which addresses the problem
of versioning for workflows by separating task definitions into interface and process
definitions.

8. EXECUTION PLATFORM

The execution platform is where service compositions are deployed and run. In this
section, we explain the respective deployment and execution options.

8.1. Deployment Options

Deployment is the process of making a finished Web service composition operational
and available for execution. We identify two core approaches: cloud versus on-premise.

8.1.1. Cloud. The cloud model is composed of three service models: Software as a
Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS).
SaaS provides the consumer with online access to applications (e.g., Google Docs); PaaS
typically provides access to environments for application development, deployment,
and execution (e.g., a Web server for Web applications, including the necessary software
development platforms, operating systems, Web services, databases); IaaS provides the
consumer the capability to manage on his own infrastructure elements (e.g., compute,
storage, network resources), and to install own operating systems and applications
[Mell and Grance 2011]. IaaS could, therefore, be used for the deployment of services
and composition, but it does not provide any specific support for this; PaaS has instead
been applied in service composition for the hosted creation, deployment, and execution
of compositions. Development instruments may have different levels of integration
with the cloud: they may be fully integrated, meaning that everything occurs within
the cloud environment, or they may be partially integrated, which is the case of service
composition tools that provide a desktop application for the creation of the service
composition and an execution environment that instead runs in the cloud.

Example PaaS offers are those of BPM vendors such as Apache Stratos17 and IBM
BPM on Cloud,18 those of mashup tools such as Yahoo! Pipes and JackBe Presto Cloud
and those of SWfMSs such as Pegasus [Deelman et al. 2005] and Tavaxy [Abouelhoda
et al. 2012], an integration of Taverna and Galaxy [Goecks et al. 2010] with cloud sup-
port. The typical concern with cloud deployment is the loss of control by the developer
over aspects like security and availability. Considering the distributed nature of service
compositions and that different service providers may deploy on different clouds with
different and possibly diverging security policies, security is indeed a problem [Wei
and Blake 2010], but economic [Tak et al. 2011], environmental [Berl et al. 2010], and
regulatory factors [Jaeger et al. 2008] must also be considered.

8.1.2. On-Premise. Compositions deployed on-premise are made operational on the
platforms and infrastructures hosted in-house. Security, availability, and the overall
management of hardware and software are under the responsibility of the composer.
This option is still considered more secure, as there is full control over services, systems,
and data. An example of service composition system that allows the deployment on-
premise is Intalio BPMS, which, among other runtime components, makes use of the
Apache ODE BPEL engine. The main concerns related to on-premise deployment are
scalability and flexibility of operation [Wang et al. 2010]. Implementing own, large-
scale service composition infrastructures can be complex and costly, which makes this
option less suitable for SMEs or individuals, which therefore usually try to alleviate
their requirements or to move to the cloud [Kim 2009].

8.2. Execution Engine

There are three major services composition execution approaches: process execution
engine, service bus, and code generation.

8.2.1. Business Process Engine. A business process engine is a centralized controller for
the instantiation, monitoring, analysis and management of processes [Chang 2006].
They are designed to balance the use of system resources in function of the duration of

17http://stratos.apache.org/.
18https://www.bpm.ibmcloud.com.

http://stratos.apache.org/
https://www.bpm.ibmcloud.com

the processes: for short-running processes, the engine keeps the system resources ac-
tive, and process state is maintained in quick-access memory for optimal performance;
for long-running processes, the engine releases system resources and stores process
state in permanent memory (e.g., a database). Well-known business process engines
for service composition are OW2 Orchestra Engine19 for BPEL and the open-source
BPM suite jBPM20 for BPMN 2.0 processes.

8.2.2. Service Bus. A service bus or enterprise service bus (ESB) is an software infras-
tructure that provides connectivity for the exchange of messages between services. The
essential feature of a service bus is mediation, which enables interconnectivity between
heterogeneous services, regardless of data formats or transport protocols. But a service
bus is also responsible for collecting, processing (i.e., translating and/or transforming),
routing, and delivering messages. ESBs are typically based on common standards: Java
Message Service (JMS) for messaging, XSLT for transformations, and Java Connector
Architecture (JCA) and SOAP for the connectivity [Chang 2006]. An example of open-
source ESB is OpenESB21, based on the Java Business Integration (JBI) specification.
Another example is Oracle Service Bus,22 which also provides features such as security,
load balancing, and monitoring.

8.2.3. Code Generation. The composition of Web services can, however, also be done
using generic programming languages that are not specifically tailored to composition
(e.g., Java, PHP). Executing long-running processes with a generic languages can be a
cumbersome task, as their execution is generally not optimized for the orchestration of
services with long-lasting processing times and the management of process state. The
risk of failures during runtime and, hence, the interruption of a running process, is
high. Nevertheless, for compositions with low complexity, the use of generic program-
ming languages is feasible, also thanks to frameworks that specifically support the
interaction with Web services. Well-known examples of such frameworks are Apache
Axis223 for Java and C, gSOAP24 for C and C++, and WSO2 WSF/PHP25 for PHP.

9. TARGET USERS

The last dimension of our analysis framework aims to understand the nature of the
users effectively engaged in the practice of composition. Traditionally, software engi-
neering distinguished between programmers (or developers) and end-users—the former
developing software, the latter using it. Over the last years, however, these roles have
increasingly blurred, and today this distinction is no longer as clear as one might think.
In the course of our analysis, we identified the following three types of users:

—Professional programmers: Professional programmers have all the necessary com-
position skills to develop also very sophisticated composites, possibly including so-
lutions to crosscutting concerns like transactions or security. They have sufficient
knowledge of the necessary language notations and composition paradigms and, if
not, know how to acquire such autonomously. One key skill of professional program-
mers is the ability to develop new APIs or components for reuse by others, not only
composite applications. Programmers developing RESTful Web services, SOAP Web

19http://orchestra.ow2.org/.
20www.jboss.org/jbpm.
21http://www.open-esb.net.
22http://www.oracle.com/technetwork/middleware/service-bus.
23http://axis.apache.org/axis2/java/core.
24http://www.cs.fsu.edu/∼engelen/soap.html.
25http://wso2.com/products/web-services-framework/php.

http://orchestra.ow2.org/
http://www.jboss.org/jbpm
http://www.open-esb.net
http://www.oracle.com/technetwork/middleware/service-bus
http://axis.apache.org/axis2/java/core
http://www.cs.fsu.edu/protect $
elax sim $engelen/soap.html
http://wso2.com/products/web-services-framework/php

services, UI widgets, and so on fall into this category, as do programmers using com-
position languages like BPEL or directly Java or C#. They not only develop simple
composites but also complex, mission-critical B2B integrations.

—End-user programmers: These are programmers that are able to develop their own
“computations” in the form of composite applications that serve some limited, typ-
ically personal, purpose. They know about components, software reuse, and are fa-
miliar with some composition paradigm that allows them to compose components.
Depending on their work and interests, they may master some notation (e.g., BPMN)
for composition. We distinguish three sub-classes of end-user programmers:
—Domain experts are people who compose software artifacts in the context of specific,

limited domains they are familiar with. Examples of domain experts are secre-
taries or accountants who use spreadsheets to automate bookkeeping tasks, scien-
tists that develop scientific workflows, for example, to analyzed human genomes,
business process modelers who model processes that involve both human actors
and automated computing tasks, and the like. An example of SWfMS suitable for
domain experts is Taverna [Hull et al. 2006].

—App developers are people who develop client-side configurations and scripts for
component-based applications, leveraging on backend-as-a-service offers. They do
not have advanced programming skills, but they are able to glue together APIs and
services. Examples of app developers are people who configure content manage-
ment systems (e.g., WordPress) or who develop simple Web or mobile applications
starting from easy-to-use programming frameworks such as Ruby on Rails or
Django.

—DevOps are advanced system administrators and/or IT managers who engage in
programming, so as to automate and optimize their everyday IT operations tasks.
They mediate between the needs of developers (e.g., fast new software changes) and
those of IT operators (e.g., stability). More and more, DevOps complements agile
software development, which, for instance, asks for the development of effective
command line scripts or the design of automated system migration workflows. A
platform that fits the characteristics of DevOps for the composition of services is
BlueMix,26 which enables them to build service-based cloud applications.

—End-user app remixers are people who do not have any notion of software develop-
ment or composition. They are even unaware of APIs, Web services, and UI widgets
(i.e., of components). Yet, they are familiar with the Web and applications in general.
Thus, they think in terms of applications (the concepts of service and application
are blurred) and of simple rules to integrate them. Most notably, if-this-then-that
(ifttt27) caters for the needs of these users: it allows them to write simple ECA rules,
such as “if a new photo about me is uploaded to Instagram, add it to Dropbox.” The
necessary application wrappers or API/service invocations are taken over by ifttt.

This taxonomy of target users is independent of the intent behind the users’ develop-
ment efforts and not meant to be exhaustive. Over time, new types of domain experts or
other sub-classes of end-user programmers may emerge; however, we expect the three
top-level types to keep their validity for long.

10. APPLYING THE TAXONOMY: EVALUATION OF SERVICE COMPOSITION APPROACHES

In this section, we discuss and compare the different state-of-the-art approaches in
service composition, by classifying and characterizing them along the dimensions of
the presented taxonomy. The approaches analyzed include major research prototypes

26http://www.ibm.com/cloud-computing/bluemix/.
27https://ifttt.com/.

http://www.ibm.com/cloud-computing/bluemix/
https://ifttt.com/

and industrial systems, as well as service composition methods and techniques. The
selection of the approaches was a three-step process that involved:

—A preliminary selection of candidate contributions from leading, peer-reviewed re-
search conferences (main and demo tracks) and journals relevant to the domain from
the year 2000 onwards, including the following conferences: BPM, CAiSE, CKIM,
EDBT, ER, ICDE, ICSE, ICSOC, ICWS, ISWC, VLDB, WISE, WWW; and journals:
IS, IEEE Internet Computing, TKDE, TSC, TOSEM, TWEB, VLDBJ.

—A further selection of systems derived from the authors’ knowledge and informal
conversations with academic colleagues and industry experts.

—A major refinement of the selected systems based upon continuous discussion between
the authors under the basis of the criteria established for the selection: relevance,
significance, impact, and originality of the approach.

At the end of this process, 12 platforms were selected: eFlow [Casati et al. 2000],
FormSys [Service Oriented Computing Group 2010], Intalio BPMS,28 JOpera [Pautasso
and Alonso 2005], Self-Serv [Benatallah et al. 2003], SHOP2 [Nau et al. 2003], Sword
[Ponnekanti and Fox 2002], Taverna [Hull et al. 2006], XL [Florescu et al. 2003], Yahoo!
Pipes,29 YAWL [Van Der Aalst and Ter Hofstede 2005], and jBPM.30

We split the taxonomy into three parts for a more concise and comprehensive analy-
sis. First, we analyze the language aspects and the target user; second, the knowledge
reuse and automation; and third, the tool support and execution platform. For each
part, we analyze the 12 platforms selected using the analysis framework proposed.
The same three parts have been used to split Appendix B, where we list all the ap-
proaches presented in this survey organized by characteristics.

10.1. Language and Target User

Language and target user are two different yet closely related dimensions. The design
of the language greatly determines the target users of the system [Lieberman et al.
2006]. Therefore, to analyze the different languages and how their design affects the
target user in service composition platforms, we performed the analysis on the selected
tools using these two dimensions together. Table I maps the selected platforms onto
the taxonomy of language aspects described in Section 4.

From the analysis of the language and target user dimensions, we observe that:

—Nine out of 12 languages leverage on flow-based paradigms and visual notations,
although there are a variety of other notations and paradigms providing for the
same or similar composition features (some of which are referenced in this work).
This underlines the empirical affirmation and suitability of visual abstractions to
represent composition concerns and express composition logic.

—The languages that target professional programmers support a much richer set of
control flow constructs than platforms targeting end users, which typically support
only sequence and exclusive choice constructs. While this finding is rather expected,
it also manifests an important need for research on intuitive, effective abstractions
and diagramming languages that can be mastered not only by professionals.

—Crosscutting concerns are not addressed or addressed only vaguely in research plat-
forms. Commercial platforms, instead, do cover crosscutting concerns, as their use
in commercial production environments simply demands for solutions addressing
issues such as security or quality.

28http://www.intalio.com/products/bpms/overview/.
29http://pipes.yahoo.com/.
30http://www.jbpm.org/.

http://www.intalio.com/products/bpms/overview/
http://pipes.yahoo.com/
http://www.jbpm.org/

Ta
bl

e
I.

T
he

La
ng

ua
ge

an
d

Ta
rg

et
U

se
r

D
im

en
si

on
s

of
th

e
S

el
ec

te
d

P
la

tfo
rm

s

L
an

gu
ag

e
T

ar
ge

t
N

ot
at

io
n

an
d

C
om

po
si

ti
on

C
on

st
ru

ct
s

C
ro

ss
cu

tt
in

g
C

om
po

n
en

t
A

pp
.

P
ar

ad
ig

m
C

on
tr

ol
F

lo
w

D
at

af
lo

w
an

d
D

at
a

T
ra

n
sf

.
C

on
ce

rn
s

T
ar

ge
t

U
se

r
eF

lo
w

C
om

po
se

s
ap

pl
ic

at
io

n
lo

gi
c.

X
M

L
da

ta
fo

rm
at

.
B

u
si

n
es

s
pr

ot
oc

ol
in

te
ra

ct
io

n
.

S
el

ec
ti

on
at

ru
n

ti
m

e

B
u

si
n

es
s

pr
oc

es
se

s
V

is
u

al
n

ot
at

io
n

,
fl

ow
di

ag
ra

m
.

F
lo

w
-b

as
ed

pa
ra

di
gm

S
im

pl
e

co
n

tr
ol

-fl
ow

pa
tt

er
n

s
(s

eq
u

en
ce

an
d

pa
ra

ll
el

)

D
at

afl
ow

de
fi

n
ed

by
m

ap
pi

n
g

fu
n

ct
io

n
s.

D
at

a
tr

an
sf

or
m

at
io

n
ca

pa
bi

li
ti

es
n

ot
de

fi
n

ed

S
ec

u
ri

ty
ru

le
s

(a
u

th
or

iz
at

io
n

)
P

ro
fe

ss
io

n
al

pr
og

ra
m

m
er

s
(S

er
vi

ce
de

ve
lo

pe
rs

)

F
or

m
S

ys
C

om
po

se
s

ap
pl

ic
at

io
n

lo
gi

c.
P

ro
pr

ie
ta

ry
se

rv
ic

e
de

sc
ri

pt
io

n
on

to
p

of
W

S
D

L
.X

M
L

fo
rm

at
.S

O
A

P
in

te
ra

ct
io

n
pr

ot
oc

ol
.P

u
sh

in
te

ra
ct

io
n

.
S

el
ec

ti
on

at
de

si
gn

ti
m

e

B
u

si
n

es
s

pr
oc

es
se

s
V

is
u

al
,b

as
ed

on
fo

rm
s.

F
lo

w
-b

as
ed

S
im

pl
e

co
n

tr
ol

-fl
ow

pa
tt

er
n

s
(s

eq
u

en
ce

an
d

ex
cl

u
si

ve
ch

oi
ce

)

C
om

pl
ex

da
ta

fl
ow

co
n

st
ru

ct
s,

an
d

ad
-h

oc
tr

an
sf

or
m

at
io

n
ca

pa
bi

li
ti

es

N
ot

ad
dr

es
se

d
E

n
d-

u
se

r
pr

og
ra

m
m

er
s

(D
om

ai
n

ex
pe

rt
s)

In
ta

li
o

B
P

M
S

C
om

po
se

s
ap

pl
ic

at
io

n
lo

gi
c.

JS
O

N
an

d
X

M
L

fo
rm

at
s.

S
O

A
P

an
d

R
E

S
T

pr
ot

oc
ol

s.
B

u
si

n
es

s
pr

ot
oc

ol
in

te
ra

ct
io

n
.D

es
ig

n
ti

m
e

se
le

ct
io

n

B
u

si
n

es
s

pr
oc

es
se

s
V

is
u

al
n

ot
at

io
n

,
fl

ow
di

ag
ra

m
s

(B
P

M
N

m
od

el
er

).
F

lo
w

-b
as

ed
pa

ra
di

gm

C
om

pl
ex

co
n

tr
ol

-fl
ow

co
n

st
ru

ct
s

D
at

a
m

ap
pe

r
w

it
h

pr
ed

efi
n

ed
fu

n
ct

io
n

s.
A

ll
ow

s
th

e
u

se
of tr

an
sf

or
m

at
io

n
la

n
gu

ag
es

E
xc

ep
ti

on
s,

tr
an

sa
ct

io
n

s,
au

th
en

ti
ca

ti
on

P
ro

fe
ss

io
n

al
pr

og
ra

m
m

er
s

Jo
pe

ra
C

om
po

se
s

ap
pl

ic
at

io
n

lo
gi

c
an

d
da

ta
.R

S
S,

JS
O

N
an

d
X

M
L

fo
rm

at
s.

S
O

A
P

an
d

R
E

S
T

pr
ot

oc
ol

s.
B

u
si

n
es

s
pr

ot
oc

ol
in

te
ra

ct
io

n
.D

es
ig

n
ti

m
e

se
le

ct
io

n

B
u

si
n

es
s

pr
oc

es
se

s
V

is
u

al
n

ot
at

io
n

,
fl

ow
di

ag
ra

m
s.

F
lo

w
-b

as
ed

pa
ra

di
gm

C
om

pl
ex

co
n

tr
ol

-fl
ow

co
n

st
ru

ct
s

N
o

sp
ec

ifi
c

da
ta

fl
ow

co
n

st
ru

ct
s.

D
at

a
tr

an
sf

or
m

at
io

n
vi

a
tr

an
sf

or
m

at
io

n
la

n
gu

ag
es

E
xc

ep
ti

on
s

P
ro

fe
ss

io
n

al
pr

og
ra

m
m

er
s

(C
on

ti
n

u
ed

)

Ta
bl

e
I.

C
on

tin
ue

d

L
an

gu
ag

e
T

ar
ge

t
N

ot
at

io
n

an
d

C
om

po
si

ti
on

C
on

st
ru

ct
s

C
ro

ss
cu

tt
in

g
C

om
po

n
en

t
A

pp
.

P
ar

ad
ig

m
C

on
tr

ol
F

lo
w

D
at

af
lo

w
an

d
D

at
a

T
ra

n
sf

.
C

on
ce

rn
s

T
ar

ge
t

U
se

r
S

el
f-

S
er

v
C

om
po

se
s

ap
pl

ic
at

io
n

lo
gi

c.
X

M
L

fo
rm

at
.

S
O

A
P

pr
ot

oc
ol

.
B

u
si

n
es

s
pr

ot
oc

ol
in

te
ra

ct
io

n
.

R
u

n
ti

m
e

se
le

ct
io

n

B
u

si
n

es
s

pr
oc

es
se

s
V

is
u

al
n

ot
at

io
n

,
st

at
e

ch
ar

ts
.

F
lo

w
-b

as
ed

pa
ra

di
gm

C
om

pl
ex

co
n

tr
ol

fl
ow

co
n

st
ru

ct
s

(s
eq

u
en

ce
,

ch
oi

ce
,r

ep
ea

t,
an

d
pa

ra
ll

el
)

D
at

afl
ow

th
ro

u
gh

va
ri

ab
le

as
si

gn
m

en
ts

an
d

ar
it

h
m

et
ic

ex
pr

es
si

on
s

N
ot

ad
dr

es
se

d
P

ro
fe

ss
io

n
al

pr
og

ra
m

m
er

s

S
H

O
P

2
C

om
po

se
s

ap
pl

ic
at

io
n

lo
gi

c.
O

W
L

-S
de

sc
ri

pt
io

n
.X

M
L

fo
rm

at
.S

O
A

P
pr

ot
oc

ol
.P

u
ll

in
te

ra
ct

io
n

.
R

u
n

ti
m

e
se

le
ct

io
n

B
u

si
n

es
s

pr
oc

es
se

s
T

ex
tu

al
n

ot
at

io
n

S
im

pl
e

co
n

tr
ol

fl
ow

pa
tt

er
n

s
(s

eq
u

en
ce

an
d

ex
cl

u
si

ve
ch

oi
ce

)

N
o

sp
ec

ifi
c

da
ta

fl
ow

co
n

st
ru

ct
s

N
ot

ad
dr

es
se

d
P

ro
fe

ss
io

n
al

pr
og

ra
m

m
er

s

S
w

or
d

C
om

po
se

s
ap

pl
ic

at
io

n
lo

gi
c.

P
ro

pr
ie

ta
ry

se
rv

ic
es

de
fi

n
ed

in
an

en
ti

ty
re

la
ti

on
sh

ip
ba

se
d

m
od

el
:P

ro
to

co
ln

ot
sp

ec
ifi

ed
.P

u
ll

in
te

ra
ct

io
n

.
S

em
i-

au
to

m
at

ic
se

le
ct

io
n

at
de

si
gn

ti
m

e

B
u

si
n

es
s

pr
oc

es
se

s
T

ex
tu

al
n

ot
at

io
n

.
R

u
le

-b
as

ed
pa

ra
di

gm

N
o

sp
ec

ifi
c

co
n

tr
ol

-fl
ow

co
n

st
ru

ct
s

N
o

sp
ec

ifi
c

da
ta

fl
ow

co
n

st
ru

ct
s

N
ot

ad
dr

es
se

d
P

ro
fe

ss
io

n
al

pr
og

ra
m

m
er

s

T
av

er
n

a
C

om
po

se
s

da
ta

.
Ja

va
,J

S
O

N
,a

n
d

X
M

L
fo

rm
at

s.
S

u
pp

or
ts

S
O

A
P

an
d

R
E

S
T

pr
ot

oc
ol

.
P

u
sh

in
te

ra
ct

io
n

s.
D

es
ig

n
ti

m
e

se
le

ct
io

n

S
ci

en
ti

fi
c

w
or

kfl
ow

s
V

is
u

al
n

ot
at

io
n

,
fl

ow
di

ag
ra

m
s.

F
lo

w
-b

as
ed

pa
ra

di
gm

S
im

pl
e

co
n

tr
ol

fl
ow

(s
eq

u
en

ce
an

d
ex

cl
u

si
ve

ch
oi

ce
)

D
at

afl
ow

fo
r

da
ta

ex
ch

an
ge

,
pr

eb
u

il
t

pr
oc

es
so

rs
fo

r
da

ta
pr

oc
es

si
n

g.
D

at
a

tr
an

sf
or

m
at

io
n

vi
a

tr
an

sf
or

m
at

io
n

la
n

gu
ag

es

E
xc

ep
ti

on
s

(r
et

ry
an

d
al

te
rn

at
iv

e
ta

sk
)

E
n

d-
u

se
r

pr
og

ra
m

m
er

s
(D

om
ai

n
ex

pe
rt

s)

(C
on

ti
n

u
ed

)

Ta
bl

e
I.

C
on

tin
ue

d

L
an

gu
ag

e
T

ar
ge

t
N

ot
at

io
n

an
d

C
om

po
si

ti
on

C
on

st
ru

ct
s

C
ro

ss
cu

tt
in

g
C

om
po

n
en

t
A

pp
.

P
ar

ad
ig

m
C

on
tr

ol
F

lo
w

D
at

af
lo

w
an

d
D

at
a

T
ra

n
sf

.
C

on
ce

rn
s

T
ar

ge
t

U
se

r
X

L
C

om
po

se
s

ap
pl

ic
at

io
n

lo
gi

c
an

d
da

ta
.X

M
L

fo
rm

at
.S

u
pp

or
ts

S
O

A
P

pr
ot

oc
ol

.
B

u
si

n
es

s
pr

ot
oc

ol
in

te
ra

ct
io

n
s.

D
es

ig
n

ti
m

e
se

le
ct

io
n

B
u

si
n

es
s

pr
oc

es
se

s
T

ex
tu

al
X

M
L

-b
as

ed
n

ot
at

io
n

.
Q

u
er

y-
ba

se
d

pa
ra

di
gm

C
om

pl
ex

co
n

tr
ol

fl
ow

co
n

st
ru

ct
s

(s
eq

u
en

ce
,

ch
oi

ce
,l

oo
ps

,
an

d
pa

ra
ll

el
)

D
at

afl
ow

co
n

st
ru

ct
s

fo
r

da
ta

fl
ow

de
pe

n
de

n
ci

es
.

D
at

a
tr

an
sf

or
m

at
io

n
vi

a
tr

an
sf

or
m

at
io

n
la

n
gu

ag
es

E
xc

ep
ti

on
s

P
ro

fe
ss

io
n

al
pr

og
ra

m
m

er
s

Ya
h

oo
!

P
ip

es
C

om
po

se
s

da
ta

.
R

S
S

an
d

JS
O

N
fo

rm
at

s.
R

E
S

T
in

te
ra

ct
io

n
pr

ot
oc

ol
.P

u
ll

in
te

ra
ct

io
n

s.
D

es
ig

n
ti

m
e

se
le

ct
io

n

M
as

h
u

ps
V

is
u

al
n

ot
at

io
n

,
fl

ow
di

ag
ra

m
s.

F
lo

w
-b

as
ed

pa
ra

di
gm

N
o

co
n

tr
ol

fl
ow

co
n

st
ru

ct
s

C
om

pl
ex

da
ta

fl
ow

co
n

st
ru

ct
s

pr
ov

id
ed

by
pr

e-
de

fi
n

ed
m

od
u

le
s

N
ot

ad
dr

es
se

d
E

n
d-

u
se

r
pr

og
ra

m
m

er
s

Y
A

W
L

C
om

po
se

s
ap

pl
ic

at
io

n
lo

gi
c

&
da

ta
.X

M
L

fo
rm

at
.

P
ro

pr
ie

ta
ry

in
te

ra
ct

io
n

pr
ot

oc
ol

H
T

T
P

-b
as

ed
.

B
u

si
n

es
s

pr
ot

oc
ol

in
te

ra
ct

io
n

s.
D

es
ig

n
ti

m
e

se
le

ct
io

n

B
u

si
n

es
s

pr
oc

es
se

s
V

is
u

al
n

ot
at

io
n

,
P

et
ri

-n
et

s.
F

lo
w

-b
as

ed
pa

ra
di

gm

C
om

pl
ex

co
n

tr
ol

fl
ow

co
n

st
ru

ct
s

D
at

afl
ow

an
d

da
ta

tr
an

sf
or

m
at

io
n

ba
se

d
on

X
M

L
-

tr
an

sf
or

m
at

io
n

la
n

gu
ag

es

N
ot

ad
dr

es
se

d
P

ro
fe

ss
io

n
al

pr
og

ra
m

m
er

s

jB
P

M
C

om
po

se
s

ap
pl

ic
at

io
n

lo
gi

c.
X

M
L

,J
S

O
N

an
d

Ja
va

ob
je

ct
s.

S
O

A
P,

R
E

S
T

an
d

O
S

G
ip

ro
to

co
ls

.
B

u
si

n
es

s
pr

ot
oc

ol
in

te
ra

ct
io

n
s.

D
es

ig
n

ti
m

e
se

le
ct

io
n

B
u

si
n

es
s

pr
oc

es
se

s
V

is
u

al
n

ot
at

io
n

,
B

P
M

N
.

F
lo

w
-b

as
ed

pa
ra

di
gm

C
om

pl
ex

co
n

tr
ol

fl
ow

co
n

st
ru

ct
s

D
at

afl
ow

ba
se

d
on

a
da

ta
m

ap
pe

r.
D

at
a

tr
an

sf
or

m
at

io
n

vi
a

sc
ri

pt
s

E
xc

ep
ti

on
s,

tr
an

sa
ct

io
n

s,
ta

sk
co

n
fi

de
n

ci
al

it
y

P
ro

fe
ss

io
n

al
pr

og
ra

m
m

er
s

—Service composition is still a prerogative of professional programmers. Despite the
adoption of intuitive visual abstractions, composing services still requires specialized
development expertise and software engineering knowledge, both skills end users
lack. Evidently, only few approaches succeed in simplifying the actual composition
problem (e.g., data passing, business protocols, correlation, and similar), which thus
remains complex.

We identify the following issues as future directions for composition languages:

—End user service composition. A commonly overlooked limitation of current systems
is that they do not make composition languages accessible to end users (also called
knowledge workers). Even sophisticated professional programmers and system ad-
ministrators are regularly forced to resort to understanding different low-level ser-
vice APIs, and procedural programming constructs, to create and maintain compos-
ite services. End users often need to access, manipulate, integrate, and analyze data
from various sources and should, like professional programmers, also be able to ben-
efit from the power of the service-oriented programming paradigm. We believe that
service composition languages should enable end users to easily and declaratively
specify some simple yet powerful composition scripts, for example, visual language
that allow data analysts to drag and drop pre-built data access and analyze services,
compose them using sequence and conditional flows [Weber et al. 2013].

—Federated cloud resources orchestration. Web services are now the glue of cloud ser-
vices, and their interactions are binding resources and operations, providing an ab-
straction layer that shifts the focus from infrastructure and operations to available
cloud services and application deployment. Overall, existing cloud services orches-
tration techniques typically rely on procedural programming in general-purpose or
scripting languages [Papazoglou and van den Heuvel 2011]. They follow a bottom-up
(or pull) provider-centric approach in which consumers are forced to create and man-
age complex cloud resource configurations using low-level and heterogeneous APIs.
This leads to an inflexible and costly environment, which adds considerable com-
plexity, demands extensive programming effort, requires multiple and continuous
patches, and perpetuates closed cloud solutions. These difficulties have led to early
solutions focused on providing unified interfaces over heterogeneous cloud provider
APIs (e.g. Apache Deltacloud,31 Apache Libcloud,32 jclouds,33 OpenStack34). Never-
theless, federated cloud services should be dynamically orchestrated in accordance
with high-level policies specified by administrators on behalf of cloud resource con-
sumers. Existing service composition techniques (e.g., the Web Service Business Pro-
cess Execution Language (BPEL) and Business Process Modeling Notation (BPMN))
focus primarily on the application layer. However, orchestrating cloud resources re-
quires rich abstractions to reason about application resource requirements and con-
straints, support exception handling, flexible and efficient scheduling of resources.
The extension of service composition and orchestration techniques to provide effec-
tive federated cloud resource orchestration coping with large-scale heterogeneous
cloud environments will become increasingly important.

10.2. Knowledge Reuse and Automation

Table II maps the selected platforms onto the taxonomy of knowledge reuse and au-
tomation aspects described in Sections 5 and 6.

31http://deltacloud.apache.org.
32http://libcloud.apache.org.
33www.jclouds.org.
34http://www.openstack.org.

http://deltacloud.apache.org
http://libcloud.apache.org
file:www.jclouds.org
http://www.openstack.org

Table II. The Knowledge Reuse and Automation Dimensions of the Selected Platforms

Knowledge Reuse
Reused Artifact Reuse Technique Automation

eFlow Components, examples Not addressed Dynamic binding of nodes
with concrete services

FormSys Components, examples, and
data transformation rules

Keyword search. Wiki of
data transformation
functions

Not addressed

Intalio
BPMS

Components, data
transformation rules, and
examples

Keyword search,
copy/paste, forum

Not addressed

JOpera Components and examples Keyword search,
copy/paste, forum

Model-driven composition

Self-Serv Components, examples Keyword search. UDDI
Registry

Service containers are
bound with concrete
services at run time

SHOP2 Components Not specified Semantic-based
composition using HTN
planning

Sword Components Not specified Semantic-based
composition using a
rule-based planner

Taverna Components, examples, and
fragments through their
encapsulation as components

Keyword search,
copy/paste, repository
and forum

Not addressed

XL Components Not specified Not addressed
Yahoo!
Pipes

Components and examples Keyword search, cloning,
repository and blog

Not addressed

YAWL Components, examples Repository Not addressed
jBPM Components, data

transformation rules, and
examples

Keyword search,
copy/paste, forum

Not addressed

From the characteristics of the platforms selected regarding the knowledge reuse
and automation dimensions, we identify the following points:

—Surprisingly, the value of reuse is still largely underestimated. Most platforms only
focus on the core artifact (i.e., components), and only very few provide support for
more complex ones, such as data transformation rules or fragments/patterns, which
instead would represent a significant help to developers. Only on Taverna provides
for the reuse of fragments.

—Keyword search is the most prominent search method supported. The reason for this
is very likely twofold. On the one hand, the platforms support reuse only of artifacts
that do not require the application of complex techniques, such as components and
examples; on the other hand, keyword search is simply easy to implement.

—Model-driven development is the most prominently adopted automation technique,
in line with the observation that most platforms adopt visual modeling languages.
Support for more advanced automation is approached only by few platforms and only
partially addressed in some others. This is partly due to the complexity of providing
effective, user-friendly automation approaches (e.g., for the reuse of fragments), and
it is also partly due to the fact that some approaches never matured from research
prototypes into commercial products (e.g., semantics-based composition).

We see the evolution of the work in knowledge reuse following a prevailing direction,
that of Composition Knowledge Graphs (CKGs). Conceptually, this is similar to work
already done in query languages in databases, leading to a unified representation,
manipulation, and reuse of composition knowledge and thereby enabling simplified

Table III. The Tool Support and Execution Platform Dimensions of the Selected Platforms

Execution Platform
Tool Support Deployment Options Execution Engine

eFlow N/A On premisses Business process engine
FormSys Manuals On premisses Business process engine
Intalio
BPMS

Versioning, manuals, and
tutorials

On premisses and on cloud Business process engine

Jopera Refactoring, versioning,
manuals, tutorials

On premisses Business process engine

Self-Serv N/A On premisses Business process engine
SHOP2 N/A On premisses Business process engine
Sword N/A On premisses Business process engine
Taverna Versioning, manuals,

tutorials, and FAQ
On premisses and on cloud Business process engine

XL N/A N/A N/A
Yahoo!
Pipes

Manuals, tutorials,
and FAQ

On cloud deployment Code generation

YAWL Manuals, tutorials,
and FAQ

On premisses Business process engine

jBPM Manuals, tutorials, FAQ,
and refactoring through
Eclipse tools

On premisses and on cloud Business process engine

and productive service-enabled composition and customization. Central to this is the
concept of CKG, where common services integration related low-level logic can be
abstracted, organized, incrementally shared, and thereby re-used by developers. The
type of knowledge captured could be organized according to various dimensions includ-
ing: APIs, Resources, Events, and Tasks. By identifying entities (i.e. types/attributes,
relationships for each dimension, and their specialization), novel foundations will be
introduced to accumulate current dispersed composition knowledge in a structured
framework.

10.3. Tool Support and Execution Platform

Table III maps the selected platforms onto the taxonomy of tool support and execution
platform aspects described in Sections 7 and 8, respectively.

From the data presented in Table III, we note the following implications:

—The tool support regarding software engineering activities for service composition is
still quite poor. This is remarkable, as the development of composite services is not a
new discipline; therefore, it would be expected that software engineering techniques
had been applied broadly to it to support developers in their work.

—We note a different trend regarding the deployment options: although cloud com-
puting is a relatively new field, the deployment on cloud is a feature that has been
rapidly adopted by service composition platforms, especially by those that appeared
recently and, of course, are still active.

—The preferred choice for the execution of composite services are business process
engines. These are the powerful instruments that provide much more than just the
execution of composite services. Typical built-in features comprise support for multi-
ple composite services in parallel, administration dashboards, runtime monitoring,
progression logging, and similar. These benefits by large outweigh the efficiency
advantage of compiled compositions.

We envision two different but complementary future directions: high-level ab-
stractions and composition middleware intelligence. Although the proliferation of
assembling applications from cloud-based APIs will increase our ability to increase

development productivity, there are significant shortfalls in seamlessly integrating
composition languages and tools with scalable data processing platforms such as
Hadoop to scale the provisioning of data-intensive services (e.g., process analytics
pipelines). The composition layer should contain the intelligence responsible for specify-
ing service interactions, while the data processing layer should contain the intelligence
responsible for dataflow and processing leveraging platforms such as Hadoop. This will
enable developers to specify application requirements and constraints using high-level
and composition-aware abstractions. Composition middleware will automatically
translate these abstractions into the efficient and platform-aware execution scripts.

11. CONCLUSION AND OUTLOOK

Web services and Web service composition are a powerful technology that has the po-
tential to transform applications, hardware, and software resources into standardized,
reusable, and dynamically integrated software components. In this comprehensive sur-
vey, we studied a great variety of service composition languages, techniques, and tools.
We proposed a taxonomy that consists of the dimensions that characterize and compare
service composition approaches. We provided a systematic analysis of the most repre-
sentative service composition approaches by evaluating and classifying them against
the proposed taxonomy. While Web services are now firmly recognized as engines of
online, service-enabled business transformation and major advancements in composi-
tion technology have been made, there are still crucial gaps in the service composition
endeavor.

We conclude this survey by identifying two additional key open research issues in
service composition technology: social/crowd computing support and engineering of
composite services.

—Social/crowd computing support. Increasingly, composite applications also leverage
on human computations [Quinn and Bederson 2011], next to machine computations
made available through Web services. For instance, social networks or crowdsourcing
enable access to vast user bases, which can be leveraged on for performing tasks that
the machine is not able to perform as good as humans do (e.g., raking a set of photos)
or that it cannot do at all (e.g., providing an opinion on a given topic). Yet, these tasks
are more and more integrated into modern applications and represent a real resource
for innovative businesses. Integrating them, however, is not yet as straightforward
as it could be. Web services technology, as of today, exclusively focuses on machine
computations only and does not take into account the specific needs that emerge when
humans are involved in applications. Hence, much more needs to be done in order
to conciliate the needs of humans with those of machines and to enable a seamless
integration of both worlds. For instance, human computations are characterized by
non-determinism (two different runs of a task or process generally lead to different
results), high uncertainty (crowd workers, for instance, oftentimes cheat), the need
for suitable quality control mechanisms beyond common service level agreements
(e.g., assigning a given task to multiple workers may allow one to reduce the effect of
noise or cheating), and, finally, the need for extended coordination approaches able
to bring together human and machine computations. All these aspects may require
a re-thinking and extension of today’s Web services abstractions and technology.

—Engineering composite services. Current systems are rarely transparent and adap-
tive. Designers and developers deal with heterogeneous and autonomous compo-
nents, with different characteristics describing various and complex dimensions (e.g,
functional properties, QoS, policies, resource requirements), often using several se-
mantically unrelated notations. This leads to fragmentation of modeling, analysis,
and reasoning, and consequently breaks the maxim of sound, continuous, incre-
mental, and end-to-end design and engineering. Versioning, refactoring, and limited

reuse are the only software engineering activities that have more than a marginal
presence in service composition platforms. As we reported earlier, we did not find
significant evidence of other software engineering activities applied to service com-
position. There is a need for further research into unified methods, models, and
tools to design, test, effectively reuse and build consistent, highly available, robust,
reusable, customizable, and composable services, building upon lessons from other
disciplines, and focusing on the unique challenges in service composition design and
engineering [Sifakis 2011]. This is essential for faster delivery and the sound, scal-
able engineering of service-based systems. It confers the advantages of productivity,
continuity, adaptivity, and correctness.

REFERENCES

Alejandro Abdelnur and Stefan Hepper. 2003. Java Portlet Specification, Version 1.0. Technical Report JSR
168. Sun Microsystems, Inc.

Serge Abiteboul, Omar Benjelloun, Ioana Manolescu, Tova Milo, and Roger Weber. 2004. Active XML: A
data-centric perspective on Web services. In Web Dynamics. Springer, 275–299.

Mohamed Abouelhoda, Shadi A. Issa, and Moustafa Ghanem. 2012. Tavaxy: Integrating Taverna and Galaxy
workflows with cloud computing support. BMC Bioinformatics 13, 1 (2012), 77.

Saeed Aghaee and Cesare Pautasso. 2012. EnglishMash: Usability design for a natural mashup Composition
environment. In ICWE Workshops. 109–120.

Rama Akkiraju, Joel Farrell, John A. Miller, Meenakshi Nagarajan, Amit Sheth, and Kunal Verma. 2005.
Web Service Semantics - WSDL-S. W3c member submission. Technical Note, Version 1.0. Retrieved from
http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.pdf.

A. M. Alashqur, Stanley Y. W. Su, and Herman Lam. 1989. OQL: A query language for manipulating object-
oriented databases. In VLDB. 433–442.

Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. 2004a. Web Services: Concepts, Architec-
tures and Application. Springer-Verlag.

Gustavo Alonso, Cesare Pautasso, and Biörn Biörnstad. 2004b. CS Adaptability Container. Technical Report.
Information Society Technology.

T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, et al. 2003. Business Pocess Execution Language
for Web Services (BPEL4WS). Specification, Version 1.1. BEA Systems, IBM Corp., Microsoft Corp.,
SAP AG, Siebel Systems. Retrieved from https://msdn.microsoft.com/en-us/library/ee251594%28v=bts.
10%29.aspx.

Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig, Toshiyuki Nakata, Jim Pruyne,
John Rofrano, Steve Tuecke, and Ming Xu. 2004. Web services agreement specification (WS-Agreement).
In Global Grid Forum, Vol. 2.

Anupriya Ankolekar, Mark Burstein, Jerry R. Hobbs, Ora Lassila, David Martin, Drew McDermott, Sheila
A. McIlraith, Srini Narayanan, Massimo Paolucci, Terry Payne, et al. 2002. DAML-S: Web service
description for the semantic web. In The Semantic Web (ISWC’02). Springer, 348–363.

Assaf Arkin, Sid Askary, Scott Fordin, Wolfgang Jekeli, Kohsuke Kawaguchi, David Orchard, Stefano
Pogliani, Karsten Riemer, et al. 2002. Web service choreography interface (WSCI) 1.0. Standards
proposal by BEA Systems, Intalio, SAP, and Sun Microsystems. Retrieved from http://www.w3.org/
TR/wsci-link.

Atipol Asavametha, Prashanth Ayyavu, and Christopher Scaffidi. 2011. No application is an island: Using
topes to transform strings during data transfer. In ICISA. 1–10.

Iman Avazpour, John Grundy, and Lars Grunske. 2013. Tool support for automatic model transformation
specification using concrete visualisations. In ASE. 718–721.

Ahmed Awad. 2007. BPMN-Q: A language to query business processes. In EMISA, Vol. 119. 115–128.
Daniel Bachlechner, Katharina Siorpaes, Dieter Fensel, and Ioan Toma. 2006. Web service discovery-a reality

check. In ESWC, Vol. 308.
Jianbo Bai, Hong Xiao, Xianghua Yang, and Guofang Zhang. 2009. Study on integration technologies of

building automation systems based on web services. In CCCM 2009, Vol. 4. 262–266.
Karim Baina, Boualem Benatallah, Fabio Casati, and Farouk Toumani. 2004. Model-driven web service

development. In CAISE. 290–306.
Luciano Baresi, Sam Guinea, and Liliana Pasquale. 2007. Self-healing BPEL processes with Dynamo and

the JBoss rule engine. In ESSPE Workshop. 11–20.

http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.pdf
https://msdn.microsoft.com/en-us/library/ee251594percnt;28v=bts.10percnt;29.aspx
https://msdn.microsoft.com/en-us/library/ee251594percnt;28v=bts.10percnt;29.aspx
http://www.w3.org/TR/wsci-link
http://www.w3.org/TR/wsci-link

Adam Barker and Jano Van Hemert. 2008. Scientific workflow: a survey and research directions. In Parallel
Processing and Applied Mathematics. Springer, 746–753.

Peter Bartalos and Mária Bieliková. 2011. Automatic dynamic web service composition: A survey and problem
formalization. Computing and Informatics 30, 4, 793–827.

Catriel Beeri, Anat Eyal, Simon Kamenkovich, and Tova Milo. 2008. Querying business processes with
BP-QL. Information Systems 33, 6 (2008), 477–507.

Oleg Beletski. 2008. End user mashup programming environments. In T-111.5550 Seminar on Multimedia.
T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, M. Hondo, Y. L. Husband, K. Januszewski, S. Lee, B.

McKee, et al. 2002. The Universal Description, Discovery and Integration (UDDI) Specification. Oasis,
5 (2002), 16–18. Retrieved from http://uddi.org/pubs/uddi-v3.00-published-20020719.htm.

Victoria Beltran, Knarig Arabshian, and Henning Schulzrinne. 2012. Ontology-based user-defined rules
and context-aware service composition system. In The Semantic Web: ESWC 2011 Workshops. Springer,
139–155.

Boualem Benatallah, Fabio Casati, and Farouk Toumani. 2004. Web service conversation modeling: A cor-
nerstone for e-business automation. IEEE Internet Computing 8, 1 (2004), 46–54.

Boualem Benatallah, Quan Z. Sheng, and Marlon Dumas. 2003. The self-serv environment for web services
composition. IEEE Internet Computing 7, 1 (2003), 40–48.

Djamal Benslimane, Schahram Dustdar, and Amit Sheth. 2008. Services mashups: The new generation of
web applications. IEEE Internet Computing 12, 5 (2008), 13–15.

Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Richard Hull, and Massimo Mecella. 2005. Auto-
matic composition of transition-based semantic web services with messaging. In VLDB. 613–624.

Daniela Berardi, Fahima Cheikh, Giuseppe De Giacomo, and Fabio Patrizi. 2008. Automatic service
composition via simulation. International Journal of Foundations of Computer Science 19, 2 (2008),
429–451.

Andreas Berl, Erol Gelenbe, Marco Di Girolamo, Giovanni Giuliani, Hermann De Meer, Minh Quan Dang,
and Kostas Pentikousis. 2010. Energy-efficient cloud computing. Computer Journal 53, 7 (2010), 1045–
1051.

Philip A. Bernstein and Sergey Melnik. 2007. Model management 2.0: Manipulating richer mappings. In
SIGMOD. 1–12.

Philip A. Bernstein and Eric Newcomer. 2009. Principles of Transaction Processing. Morgan Kaufmann.
Christian Bizer, Tom Heath, and Tim Berners-Lee. 2009. Linked data-the story so far. International Journal

on Semantic Web and Information Systems (IJSWIS) 5, 3 (2009), 1–22.
S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, J. Siméon, and M. Stefanescu. 2002. XQuery

1.0: An XML query language. World Wide Web Consortium. W3C Working Draft 15 (2002). Retrieved
from http://www.w3.org/TR/xquery.

Vinayak Borkar, Michael Carey, Daniel Engovatov, Dmitry Lychagin, and others. 2008. XQSE: An XQuery
scripting extension for the AquaLogic data services platform. In ICDE. 1229–1238.

Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Henrik Frystyk Nielsen,
Satish Thatte, and Dave Winer. 2000. Simple Object Access Protocol (SOAP) 1.1. World Wide Web
Consortium note (2000). Retrieved from http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

John Boyer, Sandy Gao, Susan Malaika, Michael Maximilien, Rich Salz, and Jerome Simeon. 2011. Experi-
ences with JSON and XML transformations. In W3C Workshop on Data and Services Integration.

Engin Bozdag, Ali Mesbah, and Arie Van Deursen. 2007. A comparison of push and pull techniques for ajax.
In 9th IEEE International Workshop onWeb Site Evolution (WSE’07). IEEE, 15–22.

Mathieu Braem, Niels Joncheere, Wim Vanderperren, Ragnhild Van Der Straeten, and Viviane Jonckers.
2006. Guiding service composition in a visual service creation environment. In 4th European Conference
on Web Services (ECOWS’06). IEEE, 13–22.

Tim Bray, Jean Paoli, C. Michael Sperberg-McQueen, Eve Maler, and François Yergeau. 1997. Extensible
markup language (XML). World Wide Web Journal 2, 4 (1997), 27–66.

Jeppe Brønsted, Klaus Marius Hansen, and Mads Ingstrup. 2007. A survey of service composition mecha-
nisms in ubiquitous computing. In UbiComp Workshops. 87–92.

Bruce G. Buchanan and Edward H. Shortliffe. 1984. Rule Based Expert Systems: The Mycin Experiments of
the Stanford Heuristic Programming Project. Addison-Wesley.

Margaret M. Burnett. 1999. Visual programming. In Wiley Encyclopedia of Electrical and Electronics
Engineering.

Felipe Cabrera, George Copeland, Bill Cox, Tom Freund, Johannes Klein, Tony Storey, and Satish Thatte.
2002. Web services transaction (WS-transaction). BEA, IBM and Microsoft. Technical Report (2002).
Retrieved from http://xml.coverpages.org/WS-Transaction2002.pdf.

http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
http://www.w3.org/TR/xquery
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://xml.coverpages.org/WS-Transaction2002.pdf

Felipe Cabrera, George Copeland, Tom Freund, Johannes Klein, David Langworthy, David Orchard, John
Shewchuk, and Tony Storey. 2004. Web services coordination (WS-Coordination). Specification by BEA,
IBM, and Microsoft (2004). Retrieved from http://xml.coverpages.org/WS-Coordination200411.pdf.

Marcos Caceres. 2012. Packaged Web Apps (Widgets) - Packaging and XML Configuration (2nd ed.). W3C
Recommendation. Retrieved from http://www.w3.org/TR/widgets/.

Paloma Caceres, Esperanza Marcos, and Belen Vela. 2003. A MDA-based approach for web information
system development. In Workshop in Software Model Engineering.

Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos E. Scheidegger, Claudio T. Silva, and Huy T.
Vo. 2006. VisTrails: Visualization meets data management. In SIGMOD. 745–747.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella, and Fabio Patrizi. 2008.
Automatic service composition and synthesis: The Roman model. IEEE Data Engineering Bulletin 31, 3
(2008), 18–22.

Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Villani. 2005. An approach for
QoS-aware service composition based on genetic algorithms. In GECCO. 1069–1075.

Michael Carey. 2006. Data delivery in a service-oriented world: The BEA aquaLogic data services platform.
In SIGMOD. 695–705.

Fabio Casati, Ski Ilnicki, LiJie Jin, Vasudev Krishnamoorthy, and Ming-Chien Shan. 2000. Adaptive and
dynamic service composition in eFlow. In CAISE. 13–31.

Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Comai, and Maristella Matera. 2002.
Designing Data-Intensive Web Applications. Morgan Kauffmann.

Donald D. Chamberlin and Raymond F. Boyce. 1974. SEQUEL: A structured English query language. In
SIGFIDET (now SIGMOD) Workshops. 249–264.

K. S. May Chan, Judith Bishop, Johan Steyn, Luciano Baresi, and Sam Guinea. 2009. A fault taxonomy for
web service composition. In ICSOC Workshops. 363–375.

James F. Chang. 2006. Business Process Management Systems: Strategy and Implementation. Auerbach
Publications.

Anis Charfi and Mira Mezini. 2004. Aspect-oriented web service composition with AO4BPEL. In Web Services.
Springer, 168–182.

Xi Chen, Angel Lagares Lemos, Moshe Chai Barukh, and Boualem Benatallah. 2012. Service graph base: A
unified graph-based platform for representing and manipulating service artifacts. In SOCA. 1–8.

Mark Chignell, James Cordy, Joanna Ng, and Yelena Yesha. 2010. The Smart Internet: Current Research and
Future Applications. Vol. 6400. Springer.

Injun Choi, Kwangmyeong Kim, and Mookyung Jang. 2007. An XML-based process repository and process
query language for integrated process management. Knowledge and Process Management 14, 4 (2007),
303–316.

Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana, et al. 2001. Web services de-
scription language (WSDL) 1.1. W3C Note. (March 2001). Retrieved from http://www.w3.org/TR/wsdl.

J. Clark and others. 1999. XSL transformations (XSLT) version 1.0. W3C Recommendation (1999). Retrieved
from http://www.w3.org/TR/xslt.

Marcel Cremene, J.-Y. Tigli, Stéphane Lavirotte, F.-C. Pop, Michel Riveill, and Gaëtan Rey. 2009. Service
composition based on natural language requests. In SCC. 486–489.

Douglas Crockford. 2006. The application/JSON media type for JavaScript Object Notation (JSON), 2006.
IETF Tools. Retrieved from http://www.ietf.org/rfc/rfc4627.txt.

Gianpaolo Cugola, Carlo Ghezzi, and Leandro Sales Pinto. 2012. DSOL: A declarative approach to self-
adaptive service orchestrations. Computing 94, 7 (2012), 579–617.

Jose Danado and Fabio Paternò. 2012. Puzzle: A visual-based environment for end user development in
touch-based mobile phones. In Human-Centered Software Engineering. Springer, 199–216.

F. Daniel, F. Casati, B. Benatallah, and M. C. Shan. 2009a. Hosted universal composition: Models, languages
and infrastructure in mashArt. In Conceptual Modeling – ER. 428–443.

Florian Daniel, Fabio Casati, Vincenzo D’Andrea, Emmanuel Mulo, Uwe Zdun, Schahram Dustdar, Steve
Strauch, David Schumm, Frank Leymann, Samir Sebahi, et al. 2009b. Business compliance governance
in service-oriented architectures. In AINA. 113–120.

Florian Daniel, Maristella Matera, Jin Yu, Boualem Benatallah, Regis Saint-Paul, and Fabio Casati. 2007.
Understanding UI integration: A survey of problems, technologies, and opportunities. IEEE Internet
Computing 11, 3 (2007), 59–66.

Florian Daniel and Barbara Pernici. 2006. Insights into web service orchestration and choreography. Inter-
national Journal of E-Business Research (IJEBR) 2, 1 (2006), 58–77.

http://xml.coverpages.org/WS-Coordination200411.pdf
http://www.w3.org/TR/widgets/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/xslt
http://www.ietf.org/rfc/rfc4627.txt

Jos De Bruijn, Christoph Bussler, John Domingue, Dieter Fensel, Martin Hepp, M. Kifer, B. König-Ries, J.
Kopecky, R. Lara, E. Oren, et al. 2005. Web service modeling ontology (WSMO). W3C Member Submission
(2005). Retrieved from http://www.w3.org/Submission/WSMO/.

Valeria De Castro, Esperanza Marcos, and Marcos Lopez Sanz. 2006. A model driven method for service
composition modelling: a case study. International Journal of Web Engineering and Technology 2, 4
(2006), 335–353.

Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta,
Karan Vahi, G. Bruce Berriman, John Good, et al. 2005. Pegasus: A framework for mapping complex
scientific workflows onto distributed systems. Scientific Programming 13, 3 (2005), 219–237.

R. P. Diaz Redondo, A. Fernández Vilas, M. Ramos Cabrer, and J. J. Pazos Arias. 2007. Enhancing residential
gateways: OSGi service composition. IEEE Transaction on Consumer Electronics 53, 1 (2007), 87–95.

Tim Dierks. 2008. The Transport Layer Security (TLS) Protocol Version 1.2. Internet Engineering Task Force.
(2008).

Schahram Dustdar and Wolfgang Schreiner. 2005. A survey on web services composition. International
Journal of Web and Grid Services 1, 1 (2005), 1–30.

ebXML Registry Technical Committee. 2002. ebXML Registry Services Specification v2. 0. Technical Report.
OASIS. Retrieved from http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf.

M. Edwards. 2011. Service Component Architecture (SCA). Retrieved from http://www.oasis-opencsa.org/sca.
Mohamad Eid, Atif Alamri, and Abdulmotaleb El Saddik. 2008. A reference model for dynamic web service

composition systems. International Journal of Web and Grid Services 4, 2 (2008), 149–168.
Hazem Elmeleegy, Anca Ivan, Rama Akkiraju, and Richard Goodwin. 2008. Mashup advisor: A recommen-

dation tool for mashup development. In ICWS. 337–344.
Rob Ennals and David Gay. 2007. User-friendly functional programming for web mashups. In ACM SIGPLAN

Notices, Vol. 42. ACM, 223–234.
Kutluhan Erol, James Hendler, and Dana S. Nau. 1994. HTN planning: Complexity and expressivity. In

AAAI, Vol. 94. 1123–1128.
M. Facemire, J. S. Hammond, C. Mines, and E. Wheeler. 2014. Predictions 2015: Mobile Development Goes

Composable, Contextual, and Cross-Touchpoint. Technical Report. Forrester Inc.
Dieter Fensel and Christoph Bussler. 2002. The web service modeling framework WSMF. Electronic Com-

merce Research and Applications 1, 2 (2002), 113–137.
José Luiz Fiadeiro, Antónia Lopes, and Laura Bocchi. 2007. Algebraic semantics of service component

modules. In Recent Trends in Algebraic Development Techniques. Springer, 37–55.
Roy Thomas Fielding. 2000. Architectural Styles and the Design of Network-based Software Architectures.

Ph.D. Dissertation. University of California, Irvine.
Klaus Finkenzeller. 2003. Data Integrity. Wiley Online Library.
Daniela Florescu, Andreas Grünhagen, and Donald Kossmann. 2003. XL: An XML programming language

for web service specification and composition. Computer Networks 42, 5 (2003), 641–660.
Daniela Florescu, Andreas Grünhagen, Donald Kossmann, and Steffen Rost. 2002. XL: A platform for Web

Services. In SIGMOD. 625–625.
Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley Professional.
Tracy Gardner. 2003. UML Modelling of Automated Business Processes with a Mapping to BPEL4WS. In

ECOOP (2003), 30–34.
John Garofalakis, Yannis Panagis, Evangelos Sakkopoulos, and Athanasios Tsakalidis. 2004. Web ser-

vice discovery mechanisms: Looking for a needle in a haystack. In International Workshop on Web
Engineering.

Gartner. 2013. Top 10 Strategic Technology Trends for 2014. Retrieved from http://www.gartner.com/
newsroom/id/2603623.

Kristof Geebelen, Sam Michiels, and Wouter Joosen. 2008. Dynamic reconfiguration using template based
web service composition. In MW4SOC Workshop. 49–54.

Carole A. Goble, Jiten Bhagat, Sergejs Aleksejevs, Don Cruickshank, Danius Michaelides, David Newman,
et al. 2010. myExperiment: A repository and social network for the sharing of bioinformatics workflows.
Nucleic Acids Sesearch 38, suppl 2 (2010), W677–W682.

Jeremy Goecks, Anton Nekrutenko, James Taylor, T. Galaxy Team, et al. 2010. Galaxy: A comprehensive
approach for supporting accessible, reproducible, and transparent computational research in the life
sciences. Genome Biology 11, 8 (2010), R86.

Nicolas Gold, Andrew Mohan, Claire Knight, and Malcolm Munro. 2004. Understanding service-oriented
software. IEEE Software 21, 2 (2004), 71–77.

http://www.w3.org/Submission/WSMO/
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf
http://www.oasis-opencsa.org/sca
http://www.gartner.com/newsroom/id/2603623
http://www.gartner.com/newsroom/id/2603623

Lars Grammel and Margaret-Anne Storey. 2010. A survey of mashup development environments. In The
Smart Internet. Springer, 137–151.

Ohad Greenshpan, Tova Milo, and Neoklis Polyzotis. 2009. Autocompletion for Mashups. Proceedings of the
VLDB Endowment 2, 1 (Aug. 2009), 538–549.

Roy Grønmo and Ida Solheim. 2004. Towards modeling web service composition in UML. WSMAI 4 (2004),
72–86.

BPMI Notation Working Group. 2004. Business Process Modeling Notation (BPMN) Version 1.0. Retrieved
from http://www.omg.org/bpmn/Documents/BPMN_V1-0_May_3_2004.pdf.

D. Gruber, B. J. Hargrave, Jeff McAffer, Pascal Rapicault, and Thomas Watson. 2005. The Eclipse 3.0 platform:
Adopting OSGi technology. IBM Systems Journal 44, 2 (2005), 289–299.

J. Octavio Gutierrez-Garcia and Felix F. Ramos-Corchado. 2011. Exception handling in pervasive service
composition using normative agents. Journal of Web Engineering 10, 3 (2011), 175–196.

Marc J. Hadley. 2006. Web application description language (WADL). Technical Report TR-2006-153. Sun
Microsystems. Retrieved from https://wadl.java.net/wadl20061109.pdf.

Rachid Hamadi and Boualem Benatallah. 2003. A Petri net-based model for web service composition. In
ADC, Vol. 17. 191–200.

Rachid Hamadi, Boualem Benatallah, and Brahim Medjahed. 2008. Self-adapting recovery nets for policy-
driven exception handling in business processes. Distributed and Parallel Databases 23, 1 (2008), 1–44.

Dick Hardt. 2012. The OAuth 2.0 Authorization Framework. Technical Report. RFC 6749, IETF.
Ramy Ragab Hassen, Lhouari Nourine, and Farouk Toumani. 2008. Protocol-based web service composition.

In ICSOC. 38–53.
J. B. Hill, B. J. Lheureux, E. Olding, D. C. Plummer, B. Rosser, and J. Sinur. 2010. Predicts 2010: Business

Process Management Will Expand Beyond Traditional Boundaries. Technical Report. Gartner.
Dion Hinchcliffe and Jim Benson. 2011. EMML Changes Everything: Profitability, Predictability, & Perfor-

mance through Enterprise Mashups. Technical Report. Open Mashup Alliance.
David Hollingsworth. 1995. The workflow reference model. Specification. Document Number TC00-1003

Version 1.1. The Workflow Management Coalition. Retrieved from ftp://www.ufv.br/dpi/mestrado/
Wkflow-BPM/The%20Workflow%20Reference%20Model.pdf.

Paul Hudak. 1989. Conception, evolution, and application of functional programming languages. ACM Com-
puting Surveys (CSUR) 21, 3 (1989), 359–411.

Duncan Hull, Katy Wolstencroft, Robert Stevens, et al. 2006. Taverna: a tool for building and running
workflows of services. Nucleic Acids Research 34 (2006), 729–732.

Takeshi Imamura, Blair Dillaway, Edi Simon, et al. 2002. XML-encryption syntax and processing. W3C
Recommendation. World Wide Web Consortium (W3C) 10 (2002).

Paul T. Jaeger, Jimmy Lin, and Justin M. Grimes. 2008. Cloud computing and information policy: Computing
in a policy cloud? Journal of Information Technology & Politics 5, 3 (2008), 269–283.

Hasan Jamil, Aminul Islam, and Shahriyar Hossain. 2010. A declarative language and toolkit for scientific
workflow implementation and execution. International Journal of Business Process Integration and
Management 5, 1 (2010), 3–17.

Meiko Jensen, Nils Gruschka, Ralph Herkenhoner, and Norbert Luttenberger. 2007. Soa and web services:
New technologies, new standards-new attacks. In ECOWS. 35–44.

Gregor Joeris and Otthein Herzog. 1999. Managing Evolving Workflow Specifications with Schema Versioning
and Migration Rules. Technical Report. University of Bremen TZI.

Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. 2008. ATL: A model transformation tool.
Science of Computer Programming 72, 1 (2008), 31–39.

N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C. Barreto. 2005. Web services
choreography description (WS-CDL) version 1.0. W3C Candidate Recommendation. Retrieved from
http://www.w3.org/TR/ws-cdl-10/.

Won Kim. 2009. Cloud computing: Today and tomorrow. Journal of Object Technology 8, 1 (2009), 65–72.
David Koop. 2008. VisComplete: Automating suggestions for visualization pipelines. IEEE Transactions on

Visualization and Computer Graphics 14 (2008), 1691–1698.
Kyriakos Kritikos, Barbara Pernici, Pierluigi Plebani, Cinzia Cappiello, Marco Comuzzi, Salima Benrernou,

Ivona Brandic, Attila Kertész, Michael Parkin, and Manuel Carro. 2013. A survey on service quality
description. ACM Computing Surveys (CSUR) 46, 1 (2013), 1.

Pal Krogdahl, Gottfried Luef, and Christoph Steindl. 2005. Service-oriented agility: An initial analysis for
the use of Agile methods for SOA development. In ICSOC, Vol. 2. 93–100.

C. Kubczak, T. Margaria, and B. Steffen. 2009. Mashup development for everybody: a planning-based ap-
proach. In Workshop on Service Matchmaking & Resource Retrieval in the Semantic Web (CEUR-WS).

http://www.omg.org/bpmn/Documents/BPMN_V1-0_May_3_2004.pdf
https://wadl.java.net/wadl20061109.pdf
http://ftp://www.ufv.br/dpi/mestrado/Wkflow-BPM/Thepercnt;20Workflowpercnt;20Referencepercnt;20Model.pdf
http://ftp://www.ufv.br/dpi/mestrado/Wkflow-BPM/Thepercnt;20Workflowpercnt;20Referencepercnt;20Model.pdf
http://www.w3.org/TR/ws-cdl-10/

Angel Lagares Lemos, Moshe Chai Barukh, and Boualem Benatallah. 2013. DataSheets: A spreadsheet-
based data-flow language. In ICSOC. 616–623.

Ugo Dal Lago, Marco Pistore, and Paolo Traverso. 2002. Planning with a language for extended goals. In
AAAI/IAAI. 447–454.

D. Davide Lamanna, James Skene, and Wolfgang Emmerich. 2003. SLAng: A language for defining service
level agreements. In FTDCS. 100–1006.

Sven Lämmermann. 2002. Runtime Service Composition via Logic-based Program Synthesis. Ph.D. Disser-
tation. KTH.

Kung-Kiu Lau and Tauseef Rana. 2010. A taxonomy of software composition mechanisms. In SEAA. 102–110.
Neal Leavitt. 2010. Will NoSQL databases live up to their promise? Computer 43, 2 (2010), 12–14.
Jonathan Lee, Shin-Jie Lee, and Ping-Feng Wang. 2014. A Framework for Composing SOAP, Non-SOAP and

Non-Web Services. IEEE Transactions on Services Computing 8, 2 (2014), 240–250.
Philipp Leitner, Anton Michlmayr, Florian Rosenberg, and Schahram Dustdar. 2008. End-to-end versioning

support for web services. In SCC, Vol. 1. 59–66.
Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa Lau. 2008. CoScripter: Automating & sharing

how-to knowledge in the enterprise. In CHI. 1719–1728.
Hector Levesque, Fiora Pirri, and Ray Reiter. 1998. Foundations for the situation calculus. Linköping Elec-

tronic Articles in Computer and Information Science 3, 18 (1998), 1–18. Retrieved from http://www.ep.
liu.se/ea/cis/1998/018/cis98018.pdf.

Hector J. Levesque, Raymond Reiter, Yves Lesperance, Fangzhen Lin, and Richard B. Scherl. 1997. GOLOG:
A logic programming language for dynamic domains. The Journal of Logic Programming 31, 1 (1997),
59–83.

Frank Leymann. 2001. Web services flow language (WSFL 1.0). (2001). Whitepaper. IBM Software Group.
621–630. Retrieved from http://xml.coverpages.org/WSFL-Guide-200110.pdf.

Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf. 2006. End-user development: An emerg-
ing paradigm. In End User Development. Springer, 1–8.

James Lin, Jeffrey Wong, Jeffrey Nichols, Allen Cypher, and Tessa A. Lau. 2009. End-user programming of
mashups with vegemite. In IUI. 97–106.

Yanni Loukissas. 2003. Rulebuilding: Exploring Design Worlds through End-User Programming. Ph.D. Dis-
sertation. Massachusetts Institute of Technology.

Bertram Ludäscher, Ilkay Altintas, Chad Berkley, et al. 2006. Scientific workflow management and the
Kepler system. Concurrency and Computation: Practice and Experience 18, 10 (2006), 1039–1065.

Anbazhagan Mani and Arun Nagarajan. 2005. Understanding quality of service for Web services. (2005).
Umardand Shripad Manikrao and T. V. Prabhakar. 2005. Dynamic selection of web services with recommen-

dation system. In NWeSP.
Ioana Manolescu, Marco Brambilla, Stefano Ceri, Sara Comai, and Piero Fraternali. 2005. Model-driven

design and deployment of service-enabled web applications. ACM TOIT 5, 3 (Aug. 2005), 439–479.
Ziyan Maraikar, Alexander Lazovik, and Farhad Arbab. 2008. Building mashups for the enterprise with

SABRE. In ICSOC. 70–83.
Annapaola Marconi and Marco Pistore. 2009. Synthesis and composition of web services. In Formal Methods

for Web Services. Springer, 89–157.
Ivan Markovic and Alessandro Costa Pereira. 2008. Towards a formal framework for reuse in business

process modeling. In BPM Workshops. 484–495.
David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDermott, Sheila McIlraith, et al. 2004.

OWL-S: Semantic markup for web services. W3C Member Submission 22 (2004), 2007–04.
David Martin, Massimo Paolucci, Sheila McIlraith, Mark Burstein, Drew McDermott, Deborah McGuinness,

Bijan Parsia, Terry Payne, Marta Sabou, et al. 2005. Bringing semantics to web services: The OWL-S
approach. In Semantic Web Services and Web Process Composition. Springer, 26–42.

Philip Mayer, Andreas Schroeder, and Nora Koch. 2008. MDD4SOA: Model-driven service orchestration. In
EDOC. 203–212.

Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela Veloso, Daniel Weld,
and David Wilkins. 1998. PDDL: The Planning Domain Definition Language. Cvc tr-98-003/dcs tr-1165,
Yale Center for Computational Vision and Control.

Sheila McIlraith and Tran Cao Son. 2002. Adapting Golog for composition of semantic web services. KR 2
(2002), 482–493.

Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. 2001. Semantic web services. IEEE Intelligent Systems
16, 2 (2001), 46–53.

http://www.ep.liu.se/ea/cis/1998/018/cis98018.pdf
http://www.ep.liu.se/ea/cis/1998/018/cis98018.pdf
http://xml.coverpages.org/WSFL-Guide-200110.pdf

Brahim Medjahed, Athman Bouguettaya, and Ahmed K. Elmagarmid. 2003. Composing web services on the
semantic web. The VLDB Journal 12, 4 (2003), 333–351.

Peter Mell and Timothy Grance. 2011. The NIST definition of cloud computing (draft). NIST Special Publi-
cation 800, 145 (2011), 7.

Nikola Milanovic and Miroslaw Malek. 2004. Current solutions for web service composition. IEEE Internet
Computing 8, 6 (2004), 51–59.

Chilukuri Krishna Mohan. 2000. Rule based programming In Frontiers of Expert Systems. Springer, 99–131.
Hamid Reza Motahari Nezhad, Boualem Benatallah, Axel Martens, Francisco Curbera, and Fabio Casati.

2007. Semi-automated adaptation of service interactions. In WWW. 993–1002.
Anthony Nadalin, Chris Kaler, Ronald Monzillo, and Phillip Hallam-Baker. 2004. Web services security:

SOAP message security 1.0 (WS-Security 2004). Oasis Standard 200401 (2004), 1–20010502.
Dana S. Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J. William Murdock, Dan Wu, and Fusun Yaman.

2003. SHOP2: An HTN planning system. Journal of Artificial Intelligence Research (JAIR) 20 (2003),
379–404.

Roger M. Needham. 1994. Denial of service: An example. Communications of the ACM 37, 11 (1994), 42–46.
Mark Nottingham and Robert Sayre. 2005. The Atom Syndication Format (RFC 4287). Technical Report.

IETF Working Group.
Željko Obrenović and Dragan Gašević. 2008. End-user service computing: Spreadsheets as a service compo-

sition tool. In ITSC.
Bart Orriëns, Jian Yang, and Mike Papazoglou. 2003a. Model driven service composition. In ICSOC. 75–90.
Bart Orriëns, Jian Yang, and Mike P. Papazoglou. 2003b. A framework for business rule driven service

composition. In Technologies for E-Services. Springer, 14–27.
OSGi Alliance. 2014. OSGi Service Platform (OSGi Core) - Release 6. (June 2014). Retrieved from

https://osgi.org/download/r6/osgi.core-6.0.0.pdf.
Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara. 2002. Semantic matching of web

services capabilities. In The Semantic Web–ISWC 2002. Springer, 333–347.
Michael P. Papazoglou. 2003. Web services and business transactions. World Wide Web 6, 1 (2003), 49–91.
Michael P. Papazoglou and Willem-Jan van den Heuvel. 2011. Blueprinting the cloud. IEEE Internet Com-

puting 15, 6 (2011), 74–79.
Cesare Pautasso. 2005. JOpera: An agile environment for web service composition with visual unit testing

and refactoring. In IEEE Symposium on Visual Languages and Human-Centric Computing. 311–313.
Cesare Pautasso. 2009a. Composing restful services with JOpera. In Software Composition. Springer, 142–

159.
Cesare Pautasso. 2009b. RESTful Web service composition with BPEL for REST. Data & Knowledge Engi-

neering 68, 9 (2009), 851–866.
Cesare Pautasso and Gustavo Alonso. 2005. The JOpera visual composition language. Journal of Visual

Languages & Computing 16, 1 (2005), 119–152.
Carlos Pedrinaci, Dong Liu, Maria Maleshkova, David Lambert, Jacek Kopecky, and John Domingue. 2010.

iServe: A linked services publishing platform. In CEUR Workshop Proceedings, Vol. 596.
Chris Peltz. 2003. Web services orchestration and choreography. Computer 36, 10 (2003), 46–52.
Rodrigo Mantovaneli Pessoa, Eduardo Silva, Marten van Sinderen, Dick A. C. Quartel, and Luı́s Ferreira

Pires. 2008. Enterprise interoperability with SOA: Survey of service composition approaches. In EDOC
Workshops. 238–251.

Giacomo Piccinelli, Anthony Finkelstein, and Scott Lane Williams. 2003. Service-oriented workflow: The
DySCo framework. In Euromicro Conference. IEEE, 291–297.

Marco Pistore, Paolo Traverso, Piergiorgio Bertoli, and Annapaola Marconi. 2005. Automated synthesis of
composite BPEL4WS web services. In ICWS. 293–301.

Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. 2006. Synthesis of reactive (1) designs. In Verification, Model
Checking, and Abstract Interpretation. Springer, 364–380.

Shankar R. Ponnekanti and Armando Fox. 2002. Sword: A developer toolkit for web service composition. In
WWW. 7–11.

Christian Prehofer, Jilles van Gurp, Vlad Stirbu, Sailesh Satish, Sasu Tarkoma, Cristiano di Flora, and Pasi
P. Liimatainen. 2010. Practical web-based smart spaces. IEEE Pervasive Computing 9, 3 (2010), 72–80.

Klaus Purer. 2011. Web Service Composition in Drupal. Master’s thesis. Vienna University.
Alexander J. Quinn and Benjamin B. Bederson. 2011. Human computation: A survey and taxonomy of a

growing field. In CHI. 1403–1412.

https://osgi.org/download/r6/osgi.core-6.0.0.pdf

Nick Ragouzis, John Hughes, Rob Philpott, Eve Maler, Paul Madsen, and Tom Scavo. 2008. Security assertion
markup language (SAML) v2. 0 technical overview. OASIS Committee Draft 2 (2008). Oasis Security Ser-
vices. Retrieved from http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html.

Erhard Rahm and Philip A. Bernstein. 2001. A survey of approaches to automatic schema matching. VLDB
Journal 10, 4 (2001), 334–350.

Preeda Rajasekaran, John Miller, Kunal Verma, and Amit Sheth. 2005. Enhancing web services description
and discovery to facilitate composition. In SWSWPC Workshop. 55–68.

Jinghai Rao, Peep Küngas, and Mihhail Matskin. 2006. Composition of semantic web services using linear
logic theorem proving. Information Systems 31, 4 (2006), 340–360.

David Recordon and Drummond Reed. 2006. OpenID 2.0: A platform for user-centric identity management.
In DIM. 11–16.

Domenico Redavid, Luigi Iannone, Terry Payne, and Giovanni Semeraro. 2008. OWL-S Atomic services
composition with SWRL rules. In Foundations of Intelligent Systems. Springer, 605–611.

Paul Resnick and Hal R. Varian. 1997. Recommender systems. Communications of the ACM 40, 3 (1997),
56–58.

A. Ro, L. Xia, H. Y. Paik, and C. Chon. 2008. Bill organiser portal: A case study on end-user composition. In
WISE 2008 Workshops. Springer, 152–161.

Florian Rosenberg, Philipp Leitner, Anton Michlmayr, Predrag Celikovic, and Schahram Dustdar. 2009.
Towards composition as a service-a quality of service driven approach. In ICDE. 1733–1740.

Soudip Roy Chowdhury, Florian Daniel, and Fabio Casati. 2011. Efficient, interactive recommendation of
mashup composition knowledge. In ICSOC. 374–388.

RSS Advisory Board. 2009. RSS 2.0 Specification. Retrieved from http://www.rssboard.org/rss-specification.
Nick Russell, Wil M. P. van der Aalst, Natalya Mulyar, et al. 2006. Workflow Control-Flow Patterns: A Revised

View. BPM Center Report BPM-06-22.
Marwan Sabbouh, Jeff Higginson, Salim Semy, and Danny Gagne. 2007. Web mashup scripting language.

In WWW. 1305–1306.
Christopher Scaffidi, Brad Myers, and Mary Shaw. 2008. Topes: Reusable abstractions for validating data.

In ICSE. 1–10.
David Schumm, Dimitrios Dentsas, Michael Hahn, Dimka Karastoyanova, Frank Leymann, and Mirko

Sonntag. 2012. Web service composition reuse through shared process fragment libraries. In ICWE.
498–501.

David Schumm, Dimka Karastoyanova, Frank Leymann, and Steve Strauch. 2011. Fragmento: Advanced
process fragment library. In Information Systems Development. Springer, 659–670.

University New South Wales Service Oriented Computing Group. 2010. FormSys Project. Retrieved from
http://www.cse.unsw.edu.au/∼FormSys/FormSys/index.htm.

Quan Z. Sheng and Boualem Benatallah. 2005. ContextUML: A UML-based modeling language for model-
driven development of context-aware web services. In ICMB 2005. 206–212.

Joseph Sifakis. 2011. A vision for computer science—the system perspective. Central European Journal of
Computer Science 1, 1 (2011), 108–116.

David E. Simmen, Mehmet Altinel, Volker Markl, Sriram Padmanabhan, and Ashutosh Singh. 2008. Damia:
Data mashups for intranet applications. In SIGMOD. 1171–1182.

Evren Sirin, Bijan Parsia, Dan Wu, James Hendler, and Dana Nau. 2004. HTN planning for web service
composition using SHOP2. Web Semantics: Science, Services and Agents on the World Wide Web 1, 4
(2004), 377–396.

David Skogan, Roy Grønmo, and Ida Solheim. 2004. Web service composition in UML. In EDOC. 47–57.
Daniel Skrobo. 2007. HUSKY: A Spreadsheet for End-User Service Composition. Ph.D. Dissertation. Univer-

sity of Zagreb.
Javier Soriano, David Lizcano, Juan José Hierro, Marcos Reyes, Christoph Schroth, and Till Janner. 2008.

Enhancing user-service interaction through a global user-centric approach to SOA. In ICNS. 194–203.
Joel Spolsky. 2008. Stackoverflow.com (Joel on Software). (April 2008). http://www.joelonsoftware.com/items/

2008/04/16.html.
B. Srivastava and J. Koehler. 2003. Web service composition-current solutions and open problems. In ICAPS

2003 Workshop on Planning for Web Services, Vol. 35. Citeseer.
Kathryn T. Stolee and Sebastian Elbaum. 2011. Refactoring pipe-like mashups for end-user programmers.

In ICSE. 81–90.
Kathryn T. Stolee, Sebastian Elbaum, and Anita Sarma. 2011. End-user programmers and their communi-

ties: An artifact-based analysis. In ESEM. 147–156.
Anja Strunk. 2010. QoS-aware service composition: A survey. In ECOWS. 67–74.

http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
http://www.rssboard.org/rss-specification
http://www.cse.unsw.edu.au/protect $
elax sim $FormSys/FormSys/index.htm
http://www.joelonsoftware.com/items/2008/04/16.html
http://www.joelonsoftware.com/items/2008/04/16.html

Byung Chul Tak, Bhuvan Urgaonkar, and Anand Sivasubramaniam. 2011. To move or not to move: The
economics of cloud computing. In USENIX. 5–5.

Wei Tan, Paolo Missier, Ian Foster, Ravi Madduri, David De Roure, and Carole Goble. 2010. A comparison
of using Taverna and BPEL in building scientific workflows: The case of caGrid. Concurrency and
Computation: Practice and Experience 22, 9 (2010), 1098–1117.

Ian Taylor, Matthew Shields, Ian Wang, and Andrew Harrison. 2007. The triana workflow environment:
Architecture and applications. In Workflows for e-Science. Springer, 320–339.

Maurice ter Beek, Antonio Bucchiarone, and Stefania Gnesi. 2006. A Survey on Service Composition Ap-
proaches: From Industrial Standards to Formal Methods. Technical Report. 2006-TR-15.

Rich Thompson. 2008. Web Services for Remote Portlets Specification v2. 0. OASIS Standard 1 (2008).
OASIS. Retrieved from http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec-os-01.pdf.

Sebastian Thöne, Ralph Depke, and Gregor Engels. 2003. Process-oriented, flexible composition of web
services with UML. In ER. 390–401.

Ajay Tipnis and Ivan Lomelli. 2009. Security - A Major Imperative for a Service-Oriented Architecture.
Technical Report. HP.

Huy Tran, Uwe Zdun, and Schahram Dustdar. 2008. View-based integration of process-driven soa models at
various abstraction levels. In MBSDI. 55–66.

Wil M. P. Van der Aalst, Marlon Dumas, and Arthur H. M. ter Hofstede. 2003. Web service composition
languages: old wine in new bottles? In Euromicro Conference. 298–305.

Wil M. P. Van Der Aalst and Arthur H. M. Ter Hofstede. 2005. YAWL: Yet another workflow language.
Information Systems 30, 4 (2005), 245–275.

Wil M. P. van Der Aalst, Arthur HM Ter Hofstede, Bartek Kiepuszewski, and Alistair P. Barros. 2003.
Workflow patterns. Distributed and Parallel Databases 14, 1 (2003), 5–51.

Wil M. P. Van Der Aalst, Arthur H. M. Ter Hofstede, and Mathias Weske. 2003. Business Process Management:
A survey. Springer.

Peter Van Roy. 2009. Programming paradigms for dummies: What every programmer should know. New
Computational Paradigms for Computer Music (2009), 9–47.

Asir S. Vedamuthu, David Orchard, Frederick Hirsch, Maryann Hondo, Prasad Yendluri, Toufic Boubez, and
Umit Yalçinalp. 2007. Web services policy 1.5-framework. W3C Recommendation 4 (2007), 1–41.

Kunal Verma, Karthik Gomadam, Amit P. Sheth, John Miller, and Zixin Wu. 2005. The METEOR-S approach
for configuring and executing dynamic web processes. Technical Report. LSDIS Lab, University of
Georgia. Retrieved from http://lsdis.cs.uga.edu/projects/meteor-stechrep6-24-05.pdf.

Dennis M. Volpano and Richard B. Kieburtz. 1985. Software templates. In ICSE. 55–60.
Larry Wall, Tom Christiansen, and Jon Orwant. 2000. Programming Perl. O’Reilly.
Guiling Wang, Shaohua Yang, and Yanbo Han. 2009. Mashroom: End-user mashup programming using

nested tables. In 18th International Conference on World Wide Web. ACM, 861–870.
Lizhe Wang, Gregor Von Laszewski, Andrew Younge, Xi He, Marcel Kunze, Jie Tao, and Cheng Fu. 2010.

Cloud computing: A perspective study. New Generation Computing 28, 2 (2010), 137–146.
Ingo Weber, Hye-Young Paik, and Boualem Benatallah. 2013. Form-based web service composition for domain

experts. TWEB 8, 1 (2013), 2.
Yi Wei and M. Brian Blake. 2010. Service-oriented computing and cloud computing: Challenges and oppor-

tunities. IEEE Internet Computing 14, 6 (2010), 72–75.
Michael Wilde, Mihael Hategan, Justin M. Wozniak, Ben Clifford, Daniel S. Katz, and Ian Foster. 2011.

Swift: A language for distributed parallel scripting. Parallel Comput. 37, 9 (2011), 633–652.
Adam Wyner, Krasimir Angelov, Guntis Barzdins, Danica Damljanovic, Brian Davis, Norbert Fuchs, Stefan

Hoefler, Ken Jones, Kaarel Kaljurand, Tobias Kuhn, and others. 2010. On controlled natural languages:
Properties and prospects. In Controlled Natural Language. Springer, 281–289.

Jun Yan, Ryszard Kowalczyk, Jian Lin, Mohan B. Chhetri, Suk Keong Goh, and Jianying Zhang. 2007.
Autonomous service level agreement negotiation for service composition provision. Future Generation
Computer Systems 23, 6 (2007), 748–759.

Jin Yu, Boualem Benatallah, Regis Saint-Paul, Fabio Casati, Florian Daniel, and Maristella Matera. 2007.
A framework for rapid integration of presentation components. In WWW. 923–932.

Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam, and Quan Z. Sheng. 2003.
Quality driven web services composition. In WWW. 411–421.

http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec-os-01.pdf
http://lsdis.cs.uga.edu/projects/meteor-stechrep6-24-05.pdf

