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1 Introduction

This paper is devoted to the homogenization of a set of Smoluchowski’s discrete

diffusion-coagulation equations [16] over periodically perforated domains. This type

of equations, describing the evolving densities of diffusing particles that are prone to

coagulate in pairs, models various physical phenomena: the evolution of a system of

solid or liquid particles suspended in a gas, polymerization, aggregation of colloidal

particles, formation of stars and planets as well as biological populations, behavior

of fuel mixtures in engines, etc. (see, e.g. [8], [11]). Quite often, starting from a mi-

croscopic description of a problem, we seek a macroscopic, or averaged, description.

As a matter of fact, while being closer to the actual physical nature, a mathematical

model for a physical system that resolves smaller scales is usually more complicated

and sometimes even virtually impossible to solve. Moreover, experimental data are

often available for macroscale quantities only, but not for the microscale. Therefore,

for quite a long time, the key issue has been how to formulate laws on a scale that is

larger than the microscale and to justify these laws on the basis of a microscopic ap-

proach. To do that, in the seventies, mathematicians have developed a new method

called homogenization [6]. This method allows to perform certain limits of the so-

lutions of partial differential equations describing media with microstructures and

to determine equations which the limits are solution of. Roughly speaking, what

one does is to consider media with microstructures, to average out the physical and
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chemical processes arising at the microscale and to calculate effective properties of

the media on the macroscale. This is precisely what has been done in the present

work, where the homogenization method has been applied to the model presented

below.

Let Ω be a bounded open set in RN with a smooth boundary ∂Ω. Let Y be the

unit periodicity cell [0, 1[N having the paving property. We perforate Ω by removing

from it a set Tǫ of periodically distributed holes defined as follows. Let us denote

by T an open subset of Y with a smooth boundary Γ, such that T ⊂ IntY . Set

Y ∗ = Y \ T which is called in the literature the solid or material part. We define

τ(ǫT ) to be the set of all translated images of ǫT of the form ǫ(k + T ), k ∈ ZN .

Then,

Tǫ := Ω ∩ τ(ǫT ).

Introduce now the periodically perforated domain Ωǫ defined by

Ωǫ = Ω \ T ǫ.

For the sake of simplicity, we make the following standard assumption on the

holes [7]:

there exists a ’security’ zone around ∂Ω without holes, i.e.

∃ δ > 0 such that dist (∂Ω, Tǫ) ≥ δ. (1)

Therefore, Ωǫ is a connected set ([7]). The boundary ∂Ωǫ of Ωǫ is then composed of

two parts. The first one is the union of the boundaries of the holes strictly contained

in Ω. It is denoted by Γǫ and is defined by

Γǫ := ∪

{
∂(ǫ(k + T )) | ǫ(k + T ) ⊂ Ω

}
.

The second part of ∂Ωǫ is its fixed exterior boundary denoted by ∂Ω. It is easily

seen that (see [3], Eq. (3))

lim
ǫ→0

ǫ | Γǫ|N−1 =| Γ|N−1

| Ω |N
| Y |N

(2)

where | · |N−1 and | · |N are the (N − 1)-dimensional and the N -dimensional Haus-

dorff measure, respectively.

Throughout this paper, ǫ will denote the general term of a sequence of positive

reals which converges to zero. From now on, let M ∈ N be fixed. We consider in

the following a system of anisotropic diffusion-coagulation equations in Ωǫ (the so-

called Smoluchowski system with diffusion) which describes the dynamics of cluster
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growth. In particular, we introduce the vector-valued function uǫ : [0, T ] × Ωǫ →RM , uǫ = (uǫ
1, . . . , u

ǫ
M ) where the variable uǫ

m ≥ 0 (1 ≤ m < M) represents the

concentration of m-clusters, that is, clusters consisting of m identical elementary

particles (monomers), while uǫ
M ≥ 0 takes into account aggregations of more than

M − 1 monomers. We assume that the only reaction allowing clusters to coalesce

to form larger clusters is a binary coagulation mechanism, while the movement of

clusters leading to aggregation results only from a diffusion process described by

a matrix Dm(t, x, x
ǫ ) (1 ≤ m ≤ M) with non-constant coefficients. Similar results

for constant diffusion matrices have been obtained in [9] (see also the comments in

Section 4).

Under these assumptions, our system reads:





∂uǫ
1

∂t
− div(D1(t, x,

x
ǫ )∇xu

ǫ
1) + uǫ

1

∑M
j=1 a1,ju

ǫ
j = 0 in [0, T ] × Ωǫ

[
D1(t, x,

x
ǫ )∇xu

ǫ
1

]
· n = 0 on [0, T ] × ∂Ω

[
D1(t, x,

x
ǫ )∇xu

ǫ
1

]
· n = ǫ ψ(t, x, x

ǫ ) on [0, T ] × Γǫ

uǫ
1(0, x) ≡ U1 > 0 in Ωǫ;

(3)

if 1 < m < M ,





∂uǫ
m

∂t
− div(Dm(t, x, x

ǫ )∇xu
ǫ
m) + uǫ

m

∑M
j=1 am,ju

ǫ
j = f ǫ

m in [0, T ] × Ωǫ

[
Dm(t, x, x

ǫ )∇xu
ǫ
m

]
· n = 0 on [0, T ] × ∂Ω

[
Dm(t, x, x

ǫ )∇xu
ǫ
m

]
· n = 0 on [0, T ] × Γǫ

uǫ
m(0, x) = 0 in Ωǫ

(4)

and eventually





∂uǫ
M
∂t

− div(DM (t, x, x
ǫ )∇xu

ǫ
M ) = gǫ in [0, T ] × Ωǫ

[
DM (t, x, x

ǫ )∇xu
ǫ
M

]
· n = 0 on [0, T ] × ∂Ω

[
DM (t, x, x

ǫ )∇xu
ǫ
M

]
· n = 0 on [0, T ] × Γǫ

uǫ
M (0, x) = 0 in Ωǫ,

(5)

where the gain terms f ǫ
m and gǫ in (4) and (5) are given by

f ǫ
m =

1

2

m−1∑

j=1

aj,m−j u
ǫ
j u

ǫ
m−j and gǫ =

1

2

∑

j+k≥M
k<M
j<M

aj,k u
ǫ
j u

ǫ
k. (6)
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The kinetic coefficients ai,j represent a reaction in which an (i+ j)-cluster is formed

from an i-cluster and a j-cluster. Therefore, they can be interpreted as “coagulation

rates” and are symmetric ai,j = aj,i > 0, i, j = 1, . . . ,M , but aM,M = 0. Let

us remark that the meaning of uǫ
M differs from that of uǫ

m (m < M), since it

describes the sum of the densities of all the ’large’ assemblies. It is assumed that

large assemblies exhibit all the same coagulation properties and do not coagulate

with each other.

Here

(t, x, y) ∈ [0, T ] × Ω × Y → Dm(t, x, y)

is a matrix-valued map with entries dm
i,j that are continuously differentiable in [0, T ]×

Ω × Y for i, j = 1, . . . , N , m = 1, . . . ,M , and are y-periodic on Y . We put Λ⋆ :=

maxi,j.m ‖dm
i,j‖C1([0,T ]×Ω×Y ). In addition we assume

(H.1) (t, x) → Dm(t, x, x
ǫ ) is measurable on Ωǫ, and

lim
ǫ→0

∫ T

0

∫

Ωǫ

|dm
i,j(t, x,

x

ǫ
)|2 dt dx =

∫ T

0

∫

Ωǫ

∫

Y
|dm

i,j(t, x, y)|
2 dt dx dy (7)

(H.2) dm
i,j = dm

j,i, for i, j = 1, . . . , N , m = 1, . . . ,M ;

(H.3) there exists 0 < λ ≤ Λ such that

λ|ξ|2 ≤

N∑

i,j=1

dm
i,jξiξj ≤ Λ|ξ|2

for all ξ ∈ RN , m = 1, . . . ,M .

Moreover, ψ, appearing in (3), is a given bounded function satisfying the following

conditions:

(H.4) ψ(t, x, x
ǫ ) ∈ C1(0, T ;B) with B = C1[Ω;C1

#(Y )], where C1
#(Y ) is the subset

of C1(RN ) of Y -periodic functions;

(H.5) ψ(t = 0, x, x
ǫ ) = 0

and U1 is a positive constant such that

U1 ≤ ‖ψ‖L∞(0,T ;B). (8)

In the Section 2 we show preliminarily that the system (3) - (5) has a unique

classic solution uǫ ∈ C1+α/2,2+α([0, T ] × Ωǫ,RM ) for any ǫ > 0. The core of this

note is the study of the asymptotic behavior of uǫ as ǫ→ 0 in the framework of the

so-called two-scale convergence. This method, introduced by Gabriel Nguetseng [14]

and Gregoire Allaire [2], relies on the following compactness theorem:
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Theorem 1.1. Let (vǫ)ǫ>0 be a bounded sequence in L2([0, T ] × Ω). There exists a

subsequence, still denoted by (vǫ)ǫ>0, and a function v0(t, x, y) in L2([0, T ]×Ω×Y )

such that

lim
ǫ→0

∫ T

0

∫

Ω
vǫ(t, x)φ

(
t, x,

x

ǫ

)
dt dx =

∫ T

0

∫

Ω

∫

Y
v0(t, x, y)φ(t, x, y) dt dx dy (9)

for all φ ∈ C1([0, T ] × Ω;C∞
# (Y )).

A sequence (vǫ)ǫ>0 satisfying (9) is said to two-scale converge to v0(t, x, y).

Within the general setting of two-scale convergence, we can state our main ho-

mogenization result:

Theorem 1.2. Let uǫ
m(t, x) (1 ≤ m ≤ M) be a family of classical solutions to

problems (3)-(5). Denote by a tilde the extension by zero outside Ωǫ of a function

defined in Ωǫ and let χ(y) represent the characteristic function of Y ∗.

Then, the sequences (ũǫ
m)ǫ>0 and (∇̃xuǫ

m)ǫ>0 (1 ≤ m ≤M) two-scale converge to:

[χ(y)um(t, x)] and [χ(y)(∇xum(t, x) + ∇yu
1
m(t, x, y))] (1 ≤ m ≤ M), respectively,

The limiting functions (um(t, x), u1
m(t, x, y)) (1 ≤ m ≤ M) are the unique solutions

in L2(0, T ;H1(Ω))×L2([0, T ]×Ω;H1
#(Y )/R) of the following two-scale homogenized

systems:

If m = 1 we have:





θ ∂u1
∂t (t, x) − divx

[
D⋆

1(t, x)∇xu1(t, x)

]
+ θ u1(t, x)

∑M
j=1 a1,j uj(t, x)

=

∫

Γ
ψ(t, x, y) dσ(y) in [0, T ] × Ω

[D⋆
1(t, x)∇xu1(t, x)] · n = 0 on [0, T ] × ∂Ω

u1(0, x) = U1 in Ω

(10)

if 1 < m < M we have





θ ∂um
∂t (t, x) − divx

[
D⋆

m(t, x)∇xum(t, x)

]
+ θ um(t, x)

∑M
j=1 am,j uj(t, x)

= θ
2

∑m−1
j=1 aj,m−juj(t, x)um−j(t, x) in [0, T ] × Ω

[D⋆
m(t, x)∇xum(t, x)] · n = 0 on [0, T ] × ∂Ω

um(0, x) = 0 in Ω

(11)
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if m = M we have:





θ ∂uM
∂t (t, x) − divx

[
D⋆

M (t, x)∇xuM (t, x)

]

= θ
2

∑
j+k≥M
k<M
j<M

aj,k uj(t, x)uk(t, x) in [0, T ] × Ω

[D⋆
M (t, x)∇xuM (t, x)] · n = 0 on [0, T ] × ∂Ω

uM (0, x) = 0 in Ω

(12)

where

u1
m(t, x, y) =

N∑

i=1

wi(t, x, y)
∂um

∂xi
(t, x) (1 ≤ m ≤M),

θ =

∫

Y
χ(y)dy = |Y ∗|

is the volume fraction of material, and D⋆
m(t, x) is a matrix defined by

(D⋆
m)ij(t, x) =

∫

Y ∗

Dm(t, x, y)(∇ywi(t, x, y) + êi) · (∇ywj(t, x, y) + êj) dy

with êi being the i-th unit vector in RN , and (wi)1≤i≤N the family of solutions of the

cell problem





−divy(Dm(t, x, y)[∇ywi(t, x, y) + êi]) = 0 in Y ∗

Dm(t, x, y)[∇ywi(t, x, y) + êi] · n = 0 on Γ

y → wi(t, x, y) Y − periodic

(13)

2 The problem at ǫ-scale: existence and regularity

The system (3)–(5) admits a local positive classical solution. Indeed, by [4] and

the usual parabolic comparison principle, we have:

Theorem 2.1. Suppose (H.1) - (H.5) hold. If ǫ > 0, then the system (3)–(5) admits

a unique maximal classical solution uǫ = (uǫ
1, . . . , u

ǫ
M ), that is defined in a relatively

open interval J ⊂ [0, T ] such that 0 ∈ J . More precisely,

uǫ ∈ C0(J × Ω̄ǫ) ∩ C1((J \ {0}) × Ω̄ǫ) ∩ C2((J \ {0}) × Ωǫ).
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Moreover

uǫ
j(t, x) > 0 for (t, x) ∈ (J \ {0}) × Ωǫ, j = 1, . . . ,M .

We are now faced with several questions that will turn out to be deeply intercon-

nected. In particular, we want to show that

• for fixed ǫ > 0, the local solution uǫ is in fact a global solution on [0, T ];

• uǫ satisfies sharp regularity estimates, i.e. uǫ
j ∈ C1+α/2,2+α([0, T ] × Ω) for

j = 1, . . . ,M .

Moreover, in order to establish our homogenization results, we have to prove

• a priori estimates for the sequences (uǫ
j)ǫ>0, (∇xu

ǫ
j)ǫ>0, (∂tu

ǫ
j)ǫ>0 in L2([0, T ]×

Ωǫ), that are independent of ǫ.

The first and crucial step will consist of proving that the uǫ
j are equibounded in

L∞([0, T ]×Ωǫ) for j = 1, . . . ,M . The uniform boundedness of uǫ
1(t, x) in L∞([0, T ]×

Ωǫ) is provided by the following statement:

Theorem 2.2. Take 0 < Tmax < supJ and let uǫ
1 be a classical solution of (3).

Then,

‖uǫ
1‖L∞(0,Tmax;L∞(Ωǫ))

≤ |U1| + c ‖ψ‖L∞(0,Tmax;B), (14)

where c is independent of ǫ.

Proof. Since

div(D1(t, x,
x

ǫ
)∇xu

ǫ
1) −

∂uǫ
1

∂t
≥ 0,

by the classical maximum principle the following estimate holds:

‖uǫ
1‖L∞(0,Tmax;L∞(Ωǫ))

≤ |U1| + ‖uǫ
1‖L∞(0,Tmax;L∞(Γǫ)). (15)

Thus, (14) will follow once we prove that

‖uǫ
1‖L∞(0,Tmax;L∞(Γǫ))

≤ c ‖ψ‖L∞(0,Tmax;B) (16)

Let now k ≥ 0 be fixed. Define: u
(k)
ǫ (t) := (uǫ

1(t)−k)+ for t ≥ 0, with derivatives:

∂u(k)
ǫ

∂t
=
∂uǫ

1

∂t
1{uǫ

1
>k} (17)

∇xu
(k)
ǫ = ∇xu

ǫ
1 1{uǫ

1
>k}. (18)
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Moreover,

u(k)
ǫ |∂Ω= (uǫ

1 |∂Ω −k)+ (19)

u(k)
ǫ |Γǫ= (uǫ

1 |Γǫ −k)+ (20)

Let us assume k ≥ k̂, where k̂ := ‖ψ‖L∞(0,Tmax;B). Then, by (8),

uǫ
1(0, x) = U1 ≤ k̂ ≤ k. (21)

For t ∈ [0, T1] with T1 ≤ Tmax, we get

1

2

∫

Ωǫ

|u(k)
ǫ (t)|2 dx =

∫ t

0

d

ds

[
1

2

∫

Ωǫ

|u(k)
ǫ (s)|2 dx

]
ds

=

∫ t

0
ds

∫

Ωǫ

∂u(k)
ǫ (s)

∂s
u(k)

ǫ (s) dx.

(22)

Taking into account (3), (17) and (18), we obtain that for all s ∈ [0, T1]

∫

Ωǫ

∂u(k)
ǫ (s)

∂s
u(k)

ǫ (s) dx =

∫

Ωǫ

∂uǫ
1(s)

∂s
u(k)

ǫ (s) dx

=

∫

Ωǫ

[
div(D1(s, x,

x

ǫ
)∇xu

ǫ
1) − uǫ

1

M∑

j=1

a1,ju
ǫ
j

]
u(k)

ǫ (s) dx

= −

∫

Ωǫ

uǫ
1(s)

M∑

j=1

a1,ju
ǫ
j(s)u

(k)
ǫ (s) dx+ ǫ

∫

Γǫ

ψ

(
s, x,

x

ǫ

)
u(k)

ǫ (s) dσǫ(x)

−

∫

Ωǫ

〈
D1(s, x,

x

ǫ
)∇xu

(k)
ǫ (s),∇xu

(k)
ǫ (s)

〉
dx

(23)

By the assumption (H.3) and Lemma 7.1 in [9], one has

∫

Ωǫ

∂u(k)
ǫ (s)

∂s
u(k)

ǫ (s) dx ≤ ǫ

∫

Γǫ

ψ

(
s, x,

x

ǫ

)
u(k)

ǫ (s) dσǫ(x) − λ

∫

Ωǫ

|∇xu
(k)
ǫ (s)|2 dx

≤
ǫ

2

∫

Bǫ
k(s)

∣∣∣∣ψ
(
s, x,

x

ǫ

)∣∣∣∣
2

dσǫ(x) +
C1

2

∫

Aǫ
k(s)

|u(k)
ǫ (s)|2 dx

−

(
λ−

C1ǫ
2

2

)∫

Ωǫ

|∇xu
(k)
ǫ (s)|2 dx

(24)

where we denote by Aǫ
k(t) and Bǫ

k(t) the set of points in Ωǫ and on Γǫ, respectively,

at which uǫ
1(t, x) > k. It holds:
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|Aǫ
k(t)| ≤ |Ωǫ|

|Bǫ
k(t)| ≤ |Γǫ|

with | · | being the Hausdorff measure.

Plugging (24) into (22) and varying over t, we arrive at the estimate:

sup
0≤t≤T1

[
1

2

∫

Ωǫ

|u(k)
ǫ (t)|2 dx

]
+

(
λ−

C1 ǫ
2

2

)∫ T1

0
dt

∫

Ωǫ

|∇u(k)
ǫ (t)|2 dx

≤
C1

2

∫ T1

0
dt

∫

Aǫ
k(t)

|u(k)
ǫ (t)|2 dx+

ǫ

2

∫ T1

0
dt

∫

Bǫ
k(t)

∣∣∣∣ψ
(
t, x,

x

ǫ

)∣∣∣∣
2

dσǫ(x)

(25)

Introducing the following norm

‖u‖2
Qǫ(Tmax) := sup

0≤t≤Tmax

∫

Ωǫ

|u(t)|2 dx+

∫ Tmax

0
dt

∫

Ωǫ

|∇u(t)|2 dx (26)

the inequality (25) can be rewritten as follows

min

{
1
2,

(
λ− C1 ǫ

2

2

)}
‖u(k)

ǫ ‖2
Qǫ(T1) ≤

C1

2

∫ T1

0
dt

∫

Aǫ
k(t)

|u(k)
ǫ (t)|2 dx

+
ǫ

2

∫ T1

0
dt

∫

Bǫ
k(t)

∣∣∣∣ψ
(
t, x,

x

ǫ

)∣∣∣∣
2

dσǫ(x)

(27)

We estimate the right-hand side of (27). From Hölder’s inequality we obtain

∫ T1

0
dt

∫

Aǫ
k(t)

|u(k)
ǫ (t)|2 dx ≤ ‖u(k)

ǫ ‖2
Lr1 (0,T1;Lq1 (Ωǫ))

‖1Aǫ
k
‖

Lr′
1 (0,T1;Lq′

1(Ωǫ))
(28)

with r′1 = r1
r1 − 1, q′1 =

q1
q1 − 1, r1 = 2 r1, q1 = 2 q1, where, for N > 2, r1 ∈ (2,∞)

and q1 ∈ (2, 2 N
(N−2) ) have been chosen such that

1

r1
+

N

2 q1
=
N

4

In particular, r′1, q
′
1 <∞, so that (28) yields

∫ T1

0
dt

∫

Aǫ
k(t)

|u(k)
ǫ (t)|2 dx ≤ ‖u(k)

ǫ ‖2
Lr1(0,T1;Lq1 (Ωǫ))

|Ω|1/q′
1 T

1/r′1
1 . (29)

If we choose

T
1/r′

1

1 <
min{1, λ}

2C1
|Ω|−1/q′

1 ≤

min

{
1
2,

(
λ− C1 ǫ

2

2

)}

C1
|Ω|−1/q′

1 ,
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then from Eq.(117) in [9], it follows that

C1

2

∫ T1

0
dt

∫

Aǫ
k(t)

|u(k)
ǫ (t)|2 dx ≤

1

2
min

{
1
2,

(
λ− C1 ǫ

2

2

)}
‖u(k)

ǫ ‖2
Qǫ(T1). (30)

Analogously, from Hölder’s inequality we have, for k ≥ k̂

ǫ

2

∫ T1

0
dt

∫

Bǫ
k(t)

∣∣∣∣ψ
(
t, x,

x

ǫ

)∣∣∣∣
2

dσǫ(x) ≤
ǫ k2

2

(
k̂2

k2

)
‖1Bǫ

k
‖L1(0,T1;L1(Γǫ))

≤
ǫ k2

2

∫ T1

0
dt |Bǫ

k(t)|.

(31)

Thus (27) yields

‖u(k)
ǫ ‖2

Qǫ(T1) ≤ ǫ γ k2

∫ T1

0
dt |Bǫ

k(t)|. (32)

Now, as in [9] (Theorem 5.2), relying on arguments that go back to [10], [15], it

follows from (32) that

‖uǫ
1‖L∞(0,T1;L∞(Γǫ)) ≤ 2mk̂

where the positive constant m is independent of ǫ. Analogous arguments are valid

for the cylinder [Ts, Ts+1] × Ωǫ, s = 1, 2, . . . , p− 1 with

[
Ts+1 − Ts

]1/r′1

<
min{1, λ}

2C1
|Ω|−1/q′1

and Tp ≡ Tmax. Thus, after a finite number of steps, we get the estimate (16),

completing the proof of Theorem 2.2.

Following the inductive argument presented in [17] (Lemma 2.2), we obtain even-

tually the global L∞ estimate for local classical solutions of (4)-(5).

Theorem 2.3. Let uǫ
j(t, x) (1 ≤ j ≤ M) be a classical solution of (3)-(5). Then

there exists K > 0 such that

‖uǫ
j‖L∞(0,Tmax;L∞(Ωǫ)) ≤ K (33)

uniformly with respect to ǫ.

A first consequence of the estimates (14) and (33) is that, for any fixed ǫ > 0,

J = [0, T ) and uǫ satisfies sharp Hölder estimates.

Theorem 2.4. Let ǫ > 0 be fixed. Then
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i) Tmax = T , i.e. J = [0, T );

ii) there exists α ∈ (0, 1), α depending only on N,λ,Λ⋆, and ǫ, such that uǫ ∈

C1+α/2,2+α([0, T ] × Ωǫ,RM ) and

‖uǫ‖C1+α/2,2+α([0,T ]×Ωǫ,RM ) ≤ C0 = C0(U1, ‖ψ‖L∞(0,T ;B),K, ǫ, α). (34)

Proof. First of all, we notice that, if we prove (34) in J , then, in particular, if

N < p <∞, we have

‖uǫ‖L∞(J,W 2,p(Ωǫ)M ) <∞.

Thus i) follows by [4], p. 154.

Let us prove ii). To avoid cumbersome notations, let us set

Fm(t, x, uǫ) =





−uǫ
1

M∑

j=1

a1,ju
ǫ
j if m = 1

−uǫ
m

M∑

j=1

am,ju
ǫ
j + f ǫ

m if 2 ≤ m < M

gǫ if m = M

(35)

and F := (F1, . . . , FM ).

First of all, we can use a modified version for the parabolic Neumann-Cauchy

problem of the classical Hölder estimates for the corresponding Dirichlet-Cauchy

problem, as one can find, for instance, in [12] (Theorem 6.44). If D[r] is an arbitrary

parabolic cylinder

D[r] = {(x, t) ; |x− x0| < r, |t− t0| < r2} ∩
(
Ω × [0, T ]

)
,

we obtain

oscD[r]u
ǫ
m ≤ C rα

[
sup

[0,T ]×Ω
|uǫ

m| + sup
[0,T ]×Ω

|Fm(t, x, uǫ)|

]
(36)

for any m = 1, . . . ,M and 0 < r < 1, where C depends on Ω, T , λ and Λ. Thus, by

Theorem 2.3,

‖uǫ‖Cα/2,α([0,T ]×Ωǫ,RM ) ≤ sup
(t,x),(τ,ξ)∈[0,T ]×Ω

|uǫ
m(t, x) − uǫ

m(τ, ξ)|

|x− ξ|α + |t− τ |α/2
+K

≤ C

[
sup

[0,T ]×Ω
|uǫ| + sup

[0,T ]×Ω
|F (t, x, uǫ)|

]
+K ≤ C (1 +K2).

(37)

We write now equations (3)-(5) in non-divergence form, and then we apply classic

Hölder estimates as in [10] (Theorem 5.2) and [12] (Theorem 5.18). Eventually,

keeping in mind (37), (34) follows. This achieves the proof of the theorem.
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We stress that all the constants involved in these Hölder estimates depend also

on the space derivatives of the diffusion coefficients. Since in (3)-(5) the diffusion

coefficients have the form dm
i,j(t, x, x/ǫ), then our Hölder estimates turn out to depend

on ǫ.

3 Homogenization

In order to prove that the solutions uǫ of our Neumann-Cauchy problem at the

scale ǫ converge to a solution of the homogenized problem described in Theorem

1.2, we need a priori L2-estimates of the derivatives of uǫ, that are independent of

ǫ > 0. Unfortunately, the bounds in (34) are not uniform in ǫ, and therefore the

compactness Theorem 1.1 does not apply

To overcome this difficulty, in the sequel we shall prove weaker estimates, that

nevertheless are uniform in ǫ.

Theorem 3.1. The sequence (∇xu
ǫ
m)ǫ>0 (1 ≤ m ≤M) is bounded in L2([0, T ]×Ωǫ),

uniformly in ǫ.

Proof. Case m = 1: let us multiply the first equation in (3) by the function uǫ
1(t, x).

Integrating, the divergence theorem yields

1

2

∫

Ωǫ

∂

∂t
|uǫ

1|
2 dx+

∫

Ωǫ

〈
D1(t, x,

x

ǫ
)∇xu

ǫ
1,∇xu

ǫ
1

〉
dx+

∫

Ωǫ

|uǫ
1|

2
M∑

j=1

a1,j u
ǫ
j dx

= ǫ

∫

Γǫ

ψ

(
t, x,

x

ǫ

)
uǫ

1(t, x) dσǫ(x)

(38)

By the assumption (H.3) and taking into account that the third term on the left-hand

side of (38) is nonnegative, one has

1

2

∫

Ωǫ

∂

∂t
|uǫ

1|
2 dx+ λ

∫

Ωǫ

|∇xu
ǫ
1|

2 dx

≤ ǫ

∫

Γǫ

ψ

(
t, x,

x

ǫ

)
uǫ

1(t, x) dσǫ(x)

(39)

Let us now estimate the term on the right-hand side of (39). It follows from Lemma

7.4 in [9] that

ǫ

∫

Γǫ

|ψ(t, x,
x

ǫ
)|2 dσǫ(x) ≤ C2 ‖ψ(t)‖2

B (40)

where C2 is a positive constant independent of ǫ and B = C1[Ω;C1
#(Y )]. Hence, by

Hölder’s and Young’s inequalities and Lemma 7.1 in [9], we deduce

12



∫

Ωǫ

∂

∂t
|uǫ

1|
2 dx+ (2λ− ǫ2 C1)

∫

Ωǫ

|∇xu
ǫ
1|

2 dx

≤ C2 ‖ψ(t)‖2
B +C1

∫

Ωǫ

|uǫ
1|

2 dx

(41)

Integrating over [0, t] with t ∈ [0, T ], we get

‖uǫ
1(t)‖

2
L2(Ωǫ)

+ (2λ− ǫ2C1)

∫ t

0
ds

∫

Ωǫ

|∇xu
ǫ
1|

2 dx ≤ C3 +C1 ‖u
ǫ
1‖

2
L2(0,T ;L2(Ωǫ))

(42)

where C1 and C3 are positive constants independent of ǫ since, by (8),

uǫ
1(0, x) = U1 ≤ ‖ψ‖L∞(0,T ;B).

Taking into account that the first term on the left-hand side of (42) is nonnegative

and the sequence (uǫ
1)ǫ>0 is bounded in L∞(0, T ;L∞(Ωǫ)), one has

(2λ− ǫ2C1) ‖∇xu
ǫ
1‖

2
L2(0,T ;L2(Ωǫ))

≤ C4 (43)

Thus the boundedness of ∇xu
ǫ
1(t, x) follows, provided that ǫ is close to zero.

The proof for the case 1 < m ≤ M is achieved by applying exactly the same

arguments considered when m = 1.

Theorem 3.2. The sequence (∂tu
ǫ
m)ǫ>0 (1 ≤ m ≤M) is bounded in L2([0, T ]×Ωǫ),

uniformly in ǫ.

Proof. Casem = 1: let us multiply the first equation in (3) by the function ∂tu
ǫ
1(t, x).

Integrating, the divergence theorem yields

∫

Ωǫ

∣∣∣∣
∂uǫ

1(t, x)

∂t

∣∣∣∣
2

dx+
1

2

∫

Ωǫ

∂

∂t

〈
D1(t, x,

x

ǫ
)∇xu

ǫ
1,∇xu

ǫ
1

〉
dx

−
1

2

∫

Ωǫ

〈
∂tD1 ∇xu

ǫ
1,∇xu

ǫ
1

〉
dx+

∫

Ωǫ

( M∑

j=1

a1,j u
ǫ
1 u

ǫ
j

)
∂uǫ

1

∂t
dx

= ǫ

∫

Γǫ

ψ

(
t, x,

x

ǫ

)
∂uǫ

1

∂t
dσǫ(x)

(44)

From Hölder’s and Young’s inequalities, exploiting the boundedness of uǫ
l (t, x) (1 ≤

l ≤M) in L∞(0, T ;L∞(Ωǫ)), one has

∫

Ωǫ

∣∣∣∣
∂uǫ

1(t, x)

∂t

∣∣∣∣
2

dx+
∂

∂t

∫

Ωǫ

〈
D1(t, x,

x

ǫ
)∇xu

ǫ
1,∇xu

ǫ
1

〉
dx

−

∫

Ωǫ

〈
∂tD1 ∇xu

ǫ
1,∇xu

ǫ
1

〉
dx ≤ C1 + 2 ǫ

∫

Γǫ

ψ

(
t, x,

x

ǫ

)
∂uǫ

1

∂t
dσǫ(x)

(45)
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where C1 is a positive constant independent of ǫ. By the assumption (H.3), we get

∫

Ωǫ

∣∣∣∣
∂uǫ

1(t, x)

∂t

∣∣∣∣
2

dx+ λ
∂

∂t

∫

Ωǫ

|∇xu
ǫ
1|

2 dx

≤ C1 + Λ⋆

∫

Ωǫ

|∇xu
ǫ
1|

2 dx+ 2 ǫ

∫

Γǫ

ψ

(
t, x,

x

ǫ

)
∂uǫ

1

∂t
dσǫ(x)

(46)

Integrating over [0, t] with t ∈ [0, T ], we obtain

∫ t

0
ds

∫

Ωǫ

∣∣∣∣
∂uǫ

1

∂s

∣∣∣∣
2

dx+ λ

∫

Ωǫ

|∇xu
ǫ
1(t, x)|

2 dx ≤ C1 T

+ Λ⋆

∫ t

0
ds

∫

Ωǫ

|∇xu
ǫ
1|

2 dx+ 2 ǫ

∫

Γǫ

ψ

(
t, x,

x

ǫ

)
uǫ

1(t, x) dσǫ(x)

− 2 ǫ

∫ t

0
ds

∫

Γǫ

∂

∂s
ψ

(
s, x,

x

ǫ

)
uǫ

1(s, x) dσǫ(x)

(47)

since ψ

(
t = 0, x, xǫ

)
≡ 0. Now we estimate the last two terms on the right-hand

side of (47).

From Hölder’s and Young’s inequalities, taking into account (40) and Lemma 7.1

in [9], one has

2 ǫ

∫

Γǫ

ψ

(
t, x,

x

ǫ

)
uǫ

1(t, x) dσǫ(x) ≤ C2 + ǫ2 C3

∫

Ωǫ

|∇xu
ǫ
1|

2 dx (48)

where C2 is a positive constant independent of ǫ since ψ ∈ L∞(0, T ;B) and uǫ
1 is

bounded in L∞(0, T ;L∞(Ωǫ)). Analogously, we get the following inequality

2 ǫ

∫ t

0
ds

∫

Γǫ

∂

∂s
ψ

(
s, x,

x

ǫ

)
uǫ

1(s, x) dσǫ(x)

≤ C4 T + C5

∫ t

0
ds‖uǫ

1(s)‖
2
L2(Ωǫ)

+ ǫ2 C5

∫ t

0
ds‖∇xu

ǫ
1(s)‖

2
L2(Ωǫ)

≤ C6

(49)

where C6 ≥ 0 is a constant independent of ǫ, since (uǫ
1)ǫ>0 is bounded in L∞(0, T ;L∞(Ωǫ)),

(∇xu
ǫ
1)ǫ>0 is bounded in L2(0, T ;L2(Ωǫ)) and

ǫ

∫

Γǫ

∣∣∣∣∂tψ

(
t, x,

x

ǫ

)∣∣∣∣
2

dσǫ(x) ≤ C̃ ‖∂tψ(t)‖2
B ≤ C4

with C̃ and C4 independent of ǫ. Combining the estimates (48) and (49) with (47)

we obtain

∫ t

0
ds

∫

Ωǫ

∣∣∣∣
∂uǫ

1

∂s

∣∣∣∣
2

dx+ (λ− ǫ2C3)

∫

Ωǫ

|∇xu
ǫ
1|

2 dx ≤ C7 (50)
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For a sequence ǫ of positive numbers going to zero: (λ−ǫ2C3) ≥ 0. Then, the second

term on the left-hand side of (50) is nonnegative, and one has

‖∂tu
ǫ
1‖

2
L2(0,T ;L2(Ωǫ))

≤ C (51)

where C ≥ 0 is a constant independent of ǫ.

The proof for the case 1 < m ≤ M is achieved by applying exactly the same

arguments considered when m = 1.

Proof of Theorem 1.2. In view of Theorems 2.2, 2.3 and 3.1, the sequences (ũǫ
m)ǫ>0

and (∇̃xuǫ
m)ǫ>0 (1 ≤ m ≤ M) are bounded in L2([0, T ] × Ω), and by application

of Theorems 7.1 and 7.3 in [9], they two-scale converge, up to a subsequence, to:

[χ(y)um(t, x)] and [χ(y)(∇xum(t, x) + ∇yu
1
m(t, x, y))] (1 ≤ m ≤ M). Similarly, in

view of Theorem 3.2, it is possible to prove that the sequence

(
∂̃uǫ

m
∂t

)

ǫ>0

(1 ≤ m ≤

M) two-scale converges to:

[
χ(y) ∂um

∂t
(t, x)

]
(1 ≤ m ≤M).

We can now find the homogenized equations satisfied by um(t, x) and u1
m(t, x, y)

(1 ≤ m ≤M).

Case m = 1: let us multiply the first equation of (3) by the test function

φǫ ≡ φ(t, x) + ǫ φ1

(
t, x,

x

ǫ

)

where φ ∈ C1([0, T ]×Ω) and φ1 ∈ C1([0, T ]×Ω;C∞
# (Y )). Integrating, the divergence

theorem yields

∫ T

0

∫

Ωǫ

∂uǫ
1

∂t
φǫ(t, x,

x

ǫ
) dt dx+

∫ T

0

∫

Ωǫ

〈
D1(t, x,

x

ǫ
)∇xu

ǫ
1,∇φǫ

〉
dt dx

+

∫ T

0

∫

Ωǫ

uǫ
1

M∑

j=1

a1,j u
ǫ
j φǫ dt dx = ǫ

∫ T

0

∫

Γǫ

ψ

(
t, x,

x

ǫ

)
φǫ dt dσǫ(x)

(52)

Passing to the two-scale limit we get
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∫ T

0

∫

Ω

∫

Y ∗

∂u1

∂t
(t, x)φ(t, x) dt dx dy

+

∫ T

0

∫

Ω

∫

Y ∗

D1(t, x, y)[∇xu1(t, x) + ∇yu
1
1(t, x, y)] · [∇xφ(t, x) + ∇yφ1(t, x, y)] dt dx dy

+

∫ T

0

∫

Ω

∫

Y ∗

u1(t, x)

M∑

j=1

a1,j uj(t, x)φ(t, x) dt dx dy

=

∫ T

0

∫

Ω

∫

Γ
ψ(t, x, y)φ(t, x) dt dx dσ(y)

(53)

where assumption (H.1) has been taken into account. The last term on the left-

hand side of (53) has been obtained by using Theorem 7.2 in [9], while the term

on the right-hand side has been attained by application of Theorem 7.5 in [9]. An

integration by parts shows that (53) is a variational formulation associated to the

following homogenized system:

−divy[D1(t, x, y)(∇xu1(t, x) + ∇yu
1
1(t, x, y))] = 0 in [0, T ] × Ω × Y ∗ (54)

[D1(t, x, y)(∇xu1(t, x) + ∇yu
1
1(t, x, y))] · n = 0 on [0, T ] × Ω × Γ (55)

θ
∂u1

∂t
(t, x) − divx

[ ∫

Y ∗

D1(t, x, y)(∇xu1(t, x) + ∇yu
1
1(t, x, y))dy

]

+ θ u1(t, x)

M∑

j=1

a1,j uj(t, x) −

∫

Γ
ψ(t, x, y) dσ(y) = 0 in [0, T ] × Ω

(56)

[ ∫

Y ∗

D1(t, x, y)(∇xu1(t, x) + ∇yu
1
1(t, x, y)) dy

]
· n = 0 on [0, T ] × ∂Ω (57)

where

θ =

∫

Y
χ(y)dy = |Y ∗|

is the volume fraction of material. To conclude, by continuity, we have that

u1(0, x) = U1 in Ω.

The function u1
1(t, x, y), satisfying (54)-(55), can be expressed as follows
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u1
1(t, x, y) =

N∑

i=1

wi(t, x, y)
∂u1

∂xi
(t, x) (58)

where (wi)1≤i≤N is the family of solutions of the cell problem





−divy(D1(t, x, y)[∇ywi(t, x, y) + êi]) = 0 in Y ∗

D1(t, x, y)[∇ywi(t, x, y) + êi] · n = 0 on Γ

y → wi(t, x, y) Y − periodic

(59)

By using the relation (58) in Eqs. (56) and (57), we get

θ
∂u1

∂t
(t, x) − divx

[
D⋆

1 ∇xu1(t, x)

]
+ θ u1(t, x)

M∑

j=1

a1,j uj(t, x)

−

∫

Γ
ψ(t, x, y) dσ(y) = 0 in [0, T ] × Ω

(60)

[D⋆
1∇xu1(t, x)] · n = 0 on [0, T ] × ∂Ω (61)

where the entries of the matrix D⋆
1 are given by

(D⋆
1)ij(t, x) =

∫

Y ∗

D1(t, x, y)[∇ywi(t, x, y) + êi] · [∇ywj(t, x, y) + êj ] dy.

The proof for the case 1 < m ≤ M is achieved by applying exactly the same

arguments considered when m = 1.

4 A mathematical model in medicine

Recently, the Smoluchowski equation with diffusion has been introduced for the

study of a mathematical model in medicine ([13], [1], [5], [9]): the diffusion and

the aggregation of the β-amyloid in the cerebral tissue affected by Alzheimer’s Dis-

ease (AD). Nowadays, the so-called amyloid cascade hypothesis is largely accepted:

roughly speaking, the Aβ-peptide is produced normally by the intramembranous

proteolysis of APP (amyloid precursor protein) throughout life, but a change in the

metabolism (due to unknow reasons, partially genetic) may increase the total pro-

duction of the monomeric isoform Aβ42, that is highly toxic for neurons. Thus, high

concentrations of Aβ42 lead to neuronal death, synaptic degeneration and eventu-

ally to dementia. Successively, Aβ42 oligomers are subject to agglomeration (leading
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ultimately to the formation of long, insoluble amyloid fibrils, which accumulate in

microscopic deposits known as senile plaques) and to diffusion through the micro-

scopic tortuosities of the brain tissue.

Mathematically, this process can be modeled at a microscopic level through the

system (3)-(5). More precisely, we define the periodically perforated domain Ωǫ,

obtained by removing from the fixed domain Ω (the cerebral tissue) infinitely many

small holes of size ǫ (the neurons), which support a non-homogeneous Neumann

boundary condition describing the production of Aβ42 by the neuron membranes.

Then, we prove that, when ǫ → 0, the solution of this micro-model two-scale con-

verges to the solution of a macro-model asymptotically consistent with the original

one. Indeed, the information given on the microscale by the non-homogeneous Neu-

mann boundary condition is transferred into a source term appearing in the limiting

(homogenized) equations. Furthermore, on the macroscale, the geometric structure

of the perforated domain induces a correction in the diffusion matrix of the limit

problem.

A similar approach to the transition from the microscopic model to the macro-

scopic one has been carried out starting from constant diffusion coefficients in [9].

Here, we have considered the case of diffusion matrices depending on time, on the

macroscopic variable x ∈ Ω and, most of all, on the microscopic variable y ∈ Y .

Indeed, aging (as well as the AD itself) yields an atrophy of the cerebral tissue,

that induces changes in the diffusion rate of the amyloid fibrils. Analogously, this

rate may vary for different regions of the brain. Finally, the dependence on the

microscopic variable makes possible to include in the model the specific features of

the diffusion. Indeed, the Aβ42-polymers do not diffuse freely in an uniform fluid:

the cerebral tissue consists of large non-neuronal support cells (the macroglia) and

the cerebrospinal fluid moves along the interstices between these cells.
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