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Abstract—A large number of algorithms for multidimensional
signals processing and scientific computation come in the form
of iterative stencil loops (ISLs), whose data dependencies span
across multiple iterations. Because of their complex inner struc-
ture, automatic hardware acceleration of such algorithms is
traditionally considered as a difficult task.

In this paper, we introduce an automatic design flow that
identifies, in a wide family of bidimensional data processing
algorithms, sub-portions that exhibit a kind of parallelism close
to that of ISLs; these are mapped onto a space of highly
optimized ad-hoc architectures, which is efficiently explored to
identify the best implementations with respect to both area
and throughput. Experimental results show that the proposed
methodology generates circuits whose performance is comparable
to that of manually-optimized solutions, and orders of magnitude
higher than those generated by commercial HLS tools.

Index Terms—High-level synthesis, performance optimization,
field-programmable gate array (FPGA), dataflow synthesis, em-
bedded systems, multimedia processing, iterative functions.

I. INTRODUCTION

Stencil computing is an important pattern used in a large
variety of domains, including multimedia processing [10],
[18], [21], and discrete scientific algorithms [5], [9]. These
applications rely on regular kernels that consume most of the
execution time, showing both iterative nature and complex
data dependencies that make them difficult to accelerate using
traditional hardware and software methods [5], [44].

Stencil kernels come in the form of an iterated function
T applied over a multidimensional signal f (a frame). The
iterated function is obtained by repeatedly composing a trans-
formation tr with itself:

f1 = tr(f), f2 = tr(f1), ..., fn = tr(fn−1) = T (f)

Typically, the desired T (f) is a fixed point of the single
step transformation tr : tr(T (f)) = T (f). In this case, the
ideal output of the process is the fixed point to which the
transformation converges starting from the initial frame. This
class of algorithms is known in the literature as Iterative
Stencil Loops (ISLs) [6], and has been analyzed within the
compiler community to find efficient implementations targeted
to CPUs [6] and Graphic Processing Units (GPUs) [7].
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The design of dedicated hardware accelerators for ISL algo-
rithms, on the contrary, still represents an unsolved challenge,
as no automatic flow to date can guarantee high-performance
implementations, mainly because of the inherently complex
data dependencies.

Standardized approaches exist for the acceleration of itera-
tive algorithms – a broad class that also includes ISLs – on
Field Programmable Gate Array (FPGA) devices. The typical
structure includes two frame buffers [1] [2] [3], A and B, and
the logic to compute the transformation tr. The initial frame is
loaded in one of the buffers, and then the following iteration
is computed and stored in the other buffer (f (in A) tr→ f1
(in B) tr→ f2 (in A), ...). The procedure continues until the
desired number of iterations has been performed. However,
this simple architecture shows a substantial shortcoming: area
and on-chip memory required are lower bounded by the frame
size, making it too costly in real-world conditions.

In this work, we propose a High-Level Synthesis (HLS) flow
that addresses the problem of automated hardware acceleration
of ISL algorithms, combining architectural aspects and a
novel algorithm analysis technique. The rationale behind the
proposed methodology stems from this observation: some
algorithms feature a peculiar form of spatial locality, where
the value of each element p at iteration i+ 1 (pi+1) depends
only on a small number of elements in the neighborhood
of p at iteration i (pi). This feature has been instrumental
to develop compiler techniques, known as tiling [45] [46],
for algorithm manipulation. In this work, we leverage the
flexibility of reconfigurable hardware to push this locality
even further, exploiting it to generate custom modules that
work on a portion of the frame, and that output a subset
of the intermediate results used by the subsequent iterations.
Suppose, for example, that we want to compute a single
element p of the final resulting matrix, obtained after n number
of iterations (let us call it pn). The value of pn depends on a
set Pn−1 = {p1n−1, ...pmn−1} of elements computed at iteration
n−1. Propagating these data dependency relations backwards
until the input frame, we obtain the domain of the function that
computes pn. Since ISL algorithms are uniform over the whole
domain, such function is uniquely determined by the number
of levels we want to traverse and, inspired by its geometric
representation (see Figure 1), we call it a cone of depth n. We
can generalize this concept considering cones that compute
a set Pn of elements of the n-th iteration: in this broader
definition, a cone is also characterized by the set of output
points Pn. In the remainder of the paper, we will refer to the
set Pn of a cone as its output window.

It can be observed that the desired processing can be
performed by repeatedly applying a cone to portions of the
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Fig. 1. A cone of depth 2 and window size 4

Algorithm 1 Generic Iterative Convolution Filter
for (iteration = 0; iteration < N ; iteration++) do

for (x = 0; x < X; x++) do
for (y = 0; y < Y ; y++) do

sum = 0
for (i = -Kernel Size; i < Kernel Size; i++) do

for (j = -Kernel Size; j < Kernel Size; j++) do
sum = sum + Kernel(j,i) * Image(x-j, y -i)

Temp(x,y) = sum
for (x = 0; x < X; x++) do

for (y = 0; y < Y ; y++) do
Image(x,y) = Temp(x,y)

input matrix. This approach leads to hardware implementations
whose on-chip memory requirements are independent of the
frame size. The parameters that define a “cone-based” archi-
tecture are the cone window size (for the sake of illustration
we consider a square window), the cone depth, and the number
of cones simultaneously present in hardware. Finding the best
architecture (i.e. the best combination of cones) that satisfies
a specified constraint, such as a minimum frame rate, is a
challenging task, due to the large number of trade-offs at
stake that make the space search complex. In this work, we
address this problem by proposing an efficient estimation of
area and throughput of a given cone architecture, thus avoiding
to actually synthesize them, which would require dozens of
hours for realistic window size and cone depth values.

The proposed methodology starts from the hardware struc-
ture we proposed in [41] and, following the design prin-
ciples we first outlined in [43] and [44], complements our
preliminary research efforts in this field by defining a novel
methodology to automatically identify ISLs even if these are
present only in a subsection of the input algorithm.

II. TARGET FAMILY OF ALGORITHMS

Many image and video processing algorithms [10], [21]
aim at finding an output matrix of the same size as the input
(e.g., a filtered image) by means of an iterative process: each
step produces an intermediate matrix, which is computed by
processing one or more elements produced during the previous
iteration. Algorithm 1 provides an illustrative algorithm be-
longing to this class: the pseudo-code emphasizes the iterative
behavior (i.e., the N iterations of the outermost loop), as
well as the necessity to scan the entire intermediate matrix
(consisting of X×Y elements) to produce the updated result.

Although the pseudo-code in Algorithm 1 might seem
very specific, its structure models a large number of existing
algorithms, especially in the multimedia field. For instance,
all the algorithms presented in [3], [13], [15], [16], [18], [20]
and [10] can be expressed in that form, as well as algorithms

for scientific computation, such as convolution and the Jacobi
iterative algorithm to solve linear eigenvalue problems [17].

Even when the whole algorithm has to be repeated multiple
times starting from different input data, as it happens in [18],
each execution can be considered an independent instance of
the pattern, unless they share intermediate results. To formalize
the properties that characterize the members of the considered
family of algorithms, let us define the following notations:

• let (x, y, n) represent the element (x, y) of the interme-
diate matrix at iteration n;

• let G(x, y, n) represent the set of elements that are
necessary to correctly compute the value of the element
(x, y, n), that is the domain of (x, y, n) (when some
regularity conditions are met we will refer to G as to the
dependency schema of the algorithm). Since the elements
belonging to G(x, y, n) are those required to compute
an element at iteration n, they have to be generated at
iteration n− 1.

Now, let us define the following properties:
1) Uniform Dependencies [48]: the shape of G(x, y, n) is
independent of (x, y). This property is the key of stencil
computing, and states that the relative position of the elements
that are necessary to compute any (x, y) do not change across
the input matrix.
2) Domain Narrowness: the elements of G(x, y, n) are a
proper subset of the input matrix S, with |G(x, y, n)| << |S|.
The traditional definition of uniform dependency [48] does
not explicitly exclude a situation where all the elements of
S are necessary to compute an element (x, y). Although our
approach can handle such pathological case, we argue that
a more interesting scenario arises when the cardinality of
G(x, y, n) is smaller than the cardinality of S, because in this
case computation can be split and parallelized.
3) Uniform Inter-Iteration Dependencies: for each iteration n,
and for each element (x, y), G(x, y, n) = G(x, y, n+ 1), i.e.
the dependency pattern remains the same at every iteration.

Remarkably, among the algorithms that satisfy these three
conditions, there is the family of Iterative stencil loops (ISL)
algorithms [5]–[8], that iteratively apply the same core opera-
tions (the stencil) on uniform patterns of dependent data. The
number of iterations can either be known in advance (as, for in-
stance, in an iterative convolution filter [13], where the amount
of desired blur corresponds to a number of filtering steps), or
potentially unbounded (as in fixed point algorithms, where one
would ideally iterate until an equilibrium is reached).

III. STATE-OF-THE-ART IMPLEMENTATIONS

Let us now focus on the design of optimized circuits for
the algorithms that exhibit the properties of domain nar-
rowness, uniform dependencies and uniform inter-iteration
dependencies. Known approaches consider mostly the family
of Iterative Stencil Loops, which is a proper subset of the
algorithms characterized by the three properties. The most
relevant are compared in Table I with respect to their area
usage, performance and memory requirements. The main
bottlenecks are shown as shaded grey cells: the criticality of
the bottleneck grows with the color darkness.



3

k k k k k k k k kk k k k k

k k k k k k k k k kk k k k k

k k k k k k k k k kk k k k k

k

Iteration 1
Iteration 2

Iteration 3

}

}

}

X  x Y elements

Single Window (SW) Sequential (Seq)
Iterated Window (IW)

Fig. 2. Different approaches to the design of optimized hardware for ISLs

A. State-of-the-Art Methodologies: A Taxonomy

In order to explain the main differences between the state-
of-the-art approaches and the proposed one, let us introduce
a simple example: Figure 2 shows an algorithm where an
operation k, whose area usage is Ak and whose execution
time is Ek, characterized by Ik = 3 adjacent inputs and
Ok = 1 output, is executed on all the X × Y elements of
the input matrix for N = 3 iterations. Thus, each iteration of
the algorithm requires Z = X·Y

Ok
operators of type k. In this

context, the implementation of all the k operators required
to execute the N iterations of the algorithm is not viable in
typical realistic scenarios, because of its extremely large area
requirements. In fact the area usage is directly proportional to
both Z and N , which makes it almost impossible to implement
this solution on actual devices for reasonable values of X
and Y : e.g., 8 millions of k operators would be necessary to
compute 10 iterations on a 1024× 768 image.

In [32] and [33], indicated as Sequential (S) in Figure 2, the
authors propose the implementation of a single instance of the
operator k, which is used several times in order to compute
all the intermediate and final results, which are the (x, y, n)
elements introduced in the previous section. As reported in
Table I, the area usage of this approach is very low, since only
a single instance of the operator k has to be implemented in
hardware. However, the performance of this approach is low
as well, since all the operations have to be performed strictly
sequentially by the single operator available, and its memory
requirements huge, because all the intermediate results have
to be stored for the subsequent iteration.

The second approach, indicated as Single Window (SW) in
Figure 2, aims at taking full advantage of parallel execution
by instantiating a window of k operators processing multi-
ple inputs coming from the same iteration [10], [35]. The
parameter w represents the width of the window, which is
basically the number of k operators working together at the
same time, while Si and So represent the set of input and
output elements, respectively. This approach is widely used
in literature [31], [34], [36], [37], especially on algorithms
characterized by simple dependencies. However, this approach
cannot be considered a viable solution when dealing with
algorithms characterized by complex dependencies, since it
does not take into account the relations between successive
frames, and therefore it is generally suboptimal when multiple

iterations are performed at once. In fact, if the dependencies
among the iterations are not considered, it is not possible to
ensure that all the output values of an intermediate step are
directly used in the following one, thus some of them have to
be stored for later use (memory overhead) or discarded and
then computed again when necessary (timing overhead).

Finally, the approach indicated as Iterated Window (IW)
in Figure 2 is the one proposed in the present work and it
is shaped to match the dependencies of the algorithm to be
implemented. Therefore, its main goal is not to maximize the
number of parallel processing elements, but rather to span
across different iterations, and ensure that each computed
element can be immediately reused. To this end the proposed
approach deals at each iteration only with the subset of
data (namely a collection of overlapping G(x, y, n) values)
necessary to compute the information needed by the following
iteration. Since in most cases the set of elements that can be
successfully computed at iteration n is only a subset of the
elements computed at iteration n − 1, the resulting structure
is usually very similar to a 3D cone, as shown in Figure 2.

The resulting architecture is characterized by the size of the
input window (wi), the size of the output window (wo) and the
number of iterations computed by each cone (t). This value
can be computed as t = N

H , where N is the total number of
iterations and H is the number of cones that are necessary
to produce a valid output starting from a set of input values,
through all the N iterations. The shape of the cores (e.g.,
the relationship between wi and wo) employed depends on
the dependencies schema of the selected algorithm, thus on
the size and shape of the G(x, y, n) sets. The proposed flow
automatically derives the best fitting ones for each algorithm.

B. Evaluation and Comparison of Existing Implementations

As described in the previous section and shown in Table
II for an instance of the ISL family, the algorithms con-
sidered here have traditionally been a challenging problem
for the designers, mainly because of the complexity of their
data dependencies. This is especially true when considering
execution time, as proved by the results shown in Table II,
which includes the best performing implementations of the
Chambolle algorithm. Most of the state-of-the-art solutions
fail in achieving real-time performance on reasonable images
(with a size ≥ 512× 512) even on GPGPUs platforms. In the
literature, the problem of designing efficient implementations
for this class of algorithms has been tackled within the com-
piler community using the concept of loop tiling [45] [46], a
platform-independent technique that divides the iteration space
into blocks, aiming to maximize data reuse and parallelism.
Our approach takes full advantage of tiling principles, and
combines them with the benefits provided by fully custom
computation on fine-grained reconfigurable platforms.

Exploiting the potential of FPGA devices for stencil com-
puting is a relatively new research direction. While existing
implementations of ISLs on CPUs [5] [6] and GPGPUs [7] [8]
have ultimately struggled achieving high performance, ground-
breaking works on FPGAs (such as [47]), have demonstrated
high potential. In fact, CPUs and GPGPUs have rigid archi-
tectures in terms of memory organization, which may not map
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TABLE I
COMPARISON AMONG DIFFERENT APPROACHES. THE MAIN BOTTLENECKS ARE SHOWN AS SHADED GREY CELLS.

Approach Pipeline Memory Area Execution On-chip
type time memory

Seq (e.g., [32], [33]) No Off-chip Ak N · Z · Ek Ik +Ok

No On-chip Ak N · Z · Ek 2 ·X · Y
SW(w) (e.g., [34], [35], No Off-chip w ·Ak

Z
w
·N · Ek Si + So

[10], [31], [36], [37]) No On-chip w ·Ak
Z
w
·N · Ek 2 ·X · Y

IW(wi, wo, H) No On-chip wi+wo
2
· N
H
·Ak

Ek·Z·N·(Ri/Si+1)
2·wo

Ri+Ro
2
· (H + 1)

Yes On-chip wi+wo
2
· N
H
·Ak

Ek·Z·H·(Ri/Si+1)
2·wo

(
N
H

+ 1
)

Si+So
2

+ Ri+Ro
2
· (H + 1)− Si − So

well on all algorithms. FPGAs overcome these limitations, but
they nonetheless show well known limitations in terms of area
and external memory accesses, which requires the hardware
implementing the stencil algorithm to be carefully designed.
Our approach addresses this requirement, by performing a
meticulous analysis based on both area and overall throughput.

Commercial alternatives to translate algorithms to hardware
exist on the market. HLS tools like Xilinx Vivado [23] or
Synopsys Synphony C Compiler [22] are commonly used to
perform a set of predefined array and loop transformations,
such as loop unrolling, merging, flattening, pipelining and
array partitioning, on the C description of the input algorithm.
However, they are inherently general purpose and can apply
only generic optimizations without specifically exploiting the
peculiarities of the specific algorithm. For this reason the
performance of the implementations generated by these frame-
works are generally unsatisfying for ISLs, especially when
compared to manually optimized implementations.

Given the lack of support for the automatic generation
of custom hardware designs for ISLs, many ad-hoc imple-
mentations have been proposed for specific ISL algorithms.
For example, [4] proposes an optimized implementation for
non-iterative 2D convolutions, and [41] provides an efficient
hardware approach for Chambolle [18]. However, since these
solutions are manually tailored for a specific algorithm, they
lack generality and reusability, and the effort required to adapt
one of these solutions to a different problem (if possible) is
generally not negligible.

Our previous research efforts in the field of ISLs have
shown that high-performance implementations can be obtained
by combining a dependency analysis from the C code [44],
and a hardware architecture specifically designed for iterative
kernels [43]. In this work, we complement these considerations
to obtain a complete and automated HLS flow. Specifically, we
herein include techniques to detect an ISL structure within a
give C code, and to perform a deep design space exploration
to implement it in hardware.

IV. THE PROPOSED ARCHITECTURE TEMPLATE

In order to automatically discover whether a given algorithm
presents these three characteristics defined in Section II, we
introduced in Section V-A symbolic execution as a means
to automatically extract its data dependencies. This technique
makes it possible to express the result of the (i+m)-th iteration
as a function of (some of) the elements computed at the i-th
iteration. Then, given the data available from the i-th iteration,
instead of trying to compute the whole fi+1, we can focus on a

TABLE II
STATE-OF-THE-ART IMPLEMENTATIONS OF CHAMBOLLE

Ref. Device Iterations Image Frame
Resolution Rate (fps)

[20] GeForce 7800 GS 50; 100; 200 256× 256 17.5; 9.6; 5
[20] GeForce 7800 GS 50; 100; 200 512× 512 5; 2.6; 1.3
[20] GeForce Go 7900 GTX 50; 100; 200 256× 256 34.1; 17.5; 8.9
[20] GeForce Go 7900 GTX 50; 100; 200 512× 512 9.3; 4.7; 2.3
[21] ATI m Radeon HD3650 100 512× 512 1-2
[21] ATI m Radeon HD3650 100 512× 512 3-4
[21] NVIDIA GTX285 100 512× 512 5-6

INPUT

OUTPUT (4x4)

Iteration 1
Iteration 2

Iteration 3
Iteration 4
Iteration 5
Iteration 6

Iteration 7
Iteration 8
Iteration 9
Iteration 10

Level 2

Level 3

Level 1

A B C D

E F G

H

Fig. 3. A simple example of a mixed cone-based architectural template

subset of the matrix elements and directly compute the results
of a generic (i+m)-th iteration (with m ≥ 1), thus obtaining
a subset of fi+m. We refer to the core that performs such
multi-iteration computation as a cone of depth m.

We define an architectural template as the combination
of multiple levels of cones that can compute the result of
multiple iterations of the elementary transformation tr. The
combinations of cones of different depths are also considered
to cover all the required iterations and explore the different
area/throughput trade-offs. These structures, as shown in Fig-
ures 3 and 4, work as follows: a small subset of the input
data is transferred from the off-chip to the on-chip memory,
consisting of multi-port block RAMs, to feed the cones of the
first level of the architecture (A, B, C and D in Figure 3).
The output of each level is then stored again in the on-chip
memory, so that it can be used as input for the subsequent
level without the need of performing data transfer from/to the
external memory. Finally, the output of the last level (Level
3 in Figure 3) is sent back to the off-chip memory and the
whole process starts over on a different window of the input,
until the final result has been computed.

The number and depth of the cones in the actual architecture
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has to be tailored to the algorithm under consideration, since
the dependencies can significantly vary from algorithm to
algorithm. Thus, multiple instances of the template may exist,
and each one is uniquely characterized by the size of the output
window of each cone and the number of levels in which the
computation is divided. Figure 3 shows an instance of the
template with an output window of 4 × 4 elements and 3
levels of computation. The only requirement for an instance
to be feasible is that, if cones of different depths are required,
at least one cone of each depth must be implemented on the
device. For instance, the structure in Figure 3 is feasible if the
available resources are sufficient to fit cones A and E.

The proposed template provides an efficient datapath struc-
ture for iterative stencil loops, which can be coupled with
a simple control logic provided with a standard memory
interface. This interface can be used to fetch data from the
external memory and forward it to the cones and then to store
back in the external memory the output of the computation.
The only information that the control logic needs in order to
perform these tasks is the size of the chunks of data to be
read/written from/to the external memory (i.e., the size of the
input/output windows of the cone architecture). Figure 4 shows
a practical example of how a final architecture looks like,
using the Chambolle algorithm as an example. For the sake
of illustration, the computation has been assigned to only two
cones that span 2 iterations, and produce an output window of
8×8 pixels (Figure 4.1). The cones are then repeated multiple
times to cover the required number of iterations (Figure 4.2),
thus producing the full datapath. The control logic is very
simple and has a negligible complexity with respect to the
rest of the design, as it is only in charge of incrementally
computing the result by sliding the output windows of the
cones over the area of the output frame. This is achieved
by feeding the two cones with the corresponding (possibly
overlapping) portions of the input frame, as shown in Figure
4.3. The block view of the complete architecture, and the
corresponding RTL implementation on a FPGA device, are
finally illustrated in Figure 4.4.

V. THE PROPOSED HLS DESIGN FLOW

The HLS methodology proposed in this paper can be applied
to the design of an optimized hardware architecture exploiting
two different kinds of optimizations:
• Cone Collapsing: a sequence of elaboration steps per-

formed on a window of the input frame is computed with
a single hardware component (a cone);

• Horizontal Parallelism: different elements of the same
frame are elaborated in parallel by different cones.

The core idea is to perform the computation of the inner-
most loop on a subset of elements, instead of considering
the whole data set. This in turn makes it possible to split
the computation into several different tasks, implemented in
hardware as cones that span on more iterations and that
can be executed completely in parallel. The main drawback
arises from the overhead introduced on the edges between
the different subsets, which depends both on the number of
iterations of the algorithm and on the shape of the subsets.
However, the proposed approach tries to endow the designer

Fig. 4. An example of an architecture for the Chambolle algorithm

with tools to explore the design space and identify the best
trade-off between the parallelization of the computation and
the overhead generated.

Relying on this idea, the design flow hereby proposed
starts from the C description of a given algorithm, analyzes
its dependencies and detects whether it can be effectively
implemented with a cone-based architecture. The output of
the flow is the VHDL description of the Pareto-optimal (area
vs. throughput) implementations of the given algorithm, in the
vast solution space of all the instantiations of the structural
template described in Section IV.

A. Symbolic Execution

To understand if the architecture template proposed in the
previous section can be successfully adopted for the implemen-
tation of a specific algorithm, it is necessary to discover if the
latter exhibits domain narrowness, uniform dependencies and
uniform inter-iteration dependencies, at least for a portion of
the input frame and for a subset of the computation iterations.

Our approach exploits symbolic execution to automatically
extract useful information on the structure and the charac-
teristics of the input algorithm. To generate the cones, it is
necessary to express the value of an element p ∈ fi+m as a
function of a set of elements of the frame produced at the i-th
iteration (i.e., fi). This functional relation is often computed by



6

hand (such as in [41]) but, when different numbers of levels are
evaluated during the design space exploration, the advantages
of an efficient and automatic way to determine the equations
for m = 1, ..., N are straightforward.

The first analysis phase is an optimized symbolic execution
of a C description1 of the input algorithm, where symbolic
expressions are propagated, rather than the actual values of
the variables. Thus, output of the iterations from i to i +m,
is not the numeric value of fi+m, but a set of equations that
relate each element of fi+m to a subset of elements of fi.

To automatically perform symbolic execution with min-
imum instrumentation effort we exploited C++ (ISO/IEC
14882:2003) templating and overloading capabilities. The key
idea is to use templates to define parametric “symbolically
executable” types. Then we overload all the relevant operations
upon such classes (+, -, *, etc.) so that, while executing
the instrumented code, the results of arithmetic operations
are logged along with their symbolic values (e.g., if a = 3
and b = 4 the arithmetic result of the a · b is 12, while
the symbolic value of the same operation is a × b). In this
way, the information that allows to completely reconstruct
the data flow is recorded within the variable containing it,
which is directly accessible at the end of the computation. A
symbolically tracked variable carries information on:
• its arithmetical actual value;
• the index of the iteration it belongs to;
• possibly, information about its location within the data

set (usually matrix indexes);
• its symbolic value;
• history of its previous (symbolic and arithmetical) values.

The iteration indexes and the history of all its previous values
are used to compare equations at different frames of the
symbolic execution, in order to detect and measure uniform
inter-iteration dependencies.

Exploiting C++ language features keeps the instrumentation
overhead to a minimum. The modifications to be performed
on the input C code are:
• the modification of the type declaration of the variables

to be tracked (in a sense, the declaration section of the
algorithm acts as an analyzer configuration);

• the initialization of all the arrays to be tracked. This
initialization does not involve the values of the elements
of the arrays, but it is needed to store, in each one of those
elements, the indexes of their location within the array
itself. For instance, the symbolic variable corresponding
to an element matrix[x][y] would contain, along with
the other data, also the two indexes x and y;

• the (highly-automatable) definition of new overloaded
functions – one for each custom or library function to
be tracked by the symbolic analysis – that take as input
symbolic values instead of the original ones.

Below, a snippet of the definition of the symbolic integer:

class symb_int: public symb_element{

1There are no “strict” syntactic constraints on the language used to describe
the algorithms. Some language features, though, can generate code for which
symbolic execution is less effective, such as accessing arrays by using pointer
arithmetic and dereferentiation instead of square brackets.

public:
int n, level, store_n[MAX_LEVEL];
string svalue, id, temp_svalue;
string store_svalue[MAX_LEVEL];
[...]}

Let’s consider, as an example, the overloaded + operator:
symb_int& operator+(symb_int op1, symb_int op2){

[...]
ss1 << "(" << op1.svalue <<"+"<< op2.svalue<<")";
ss2 << "(" << op1.id << " + " << op2.id << ")";
temp->n = op1.n + op2.n;
temp->svalue = ss1.str().c_str();
temp->id = ss2.str().c_str();
temp->store_n[op1.level]=op1.n;
return *temp;}

The stringstream ss1 is used to propagate the symbolic
value (svalue) corresponding to the result of the sum operation
by concatenating the two svalue variables of the two input
symb int. Similarly, ss2 is used for the propagation of the id.
Finally, the variable n holding the actual value of the sum is
computed by adding the two numeric values in input.

In addition to overloaded operators, we have also developed
a mechanism to keep track of function calls:
int funct(int n); //custom or library function

symb_int funct(symb_int n){ //automatically
generated

n.funct("funct",funct(n.n));
return n;}

void funct(const char*fname="f",int value=0){
this->n=value;
stringstream ss1, ss2;
ss1 << fname << this->svalue;
ss2 << fname << this->temp_svalue;
this->svalue=ss1.str();
this->temp_svalue = ss2.str();}

The mechanism consists in automatically defining, for each
(custom or library) function used in the given algorithm, a
new overloaded function that takes as input a symbolic value
instead of the original one (e.g., a symb int instead of a simple
int) so that every time a function is called on a symbolic value,
the function defined by our design flow is invoked instead of
the one defined by the user or present in the library. The main
tasks performed by the functions generated by the flow are:
• to keep track of the computational flow (i.e., the opera-

tions applied to the symbolic variable);
• to retrieve the return value by invoking the original

function with the actual value of the symbolic variable
as parameter.

In this way, not only simple operations can be tracked by
the proposed symbolic execution, but also complex functions
defined by the users or imported from the standard libraries.

B. Data dependencies analysis

The output of symbolic execution is then processed to
estimate its level of domain narrowness, uniform dependen-
cies and uniform inter-iteration dependencies. As shown in
Figure 5, symbolic execution produces a dependencies schema
for each element of the data matrix and for each iteration.
This dependencies schema is expressed as a formula, where
elem[a][b] n identifies the element located at coordinates
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Fig. 5. Graphical representation of the data of the Python analyzer

(a, b) at the iteration level n. We are interested in discovering
if a subset (ideally consisting of all the elements) of the data
matrix is characterized by the same formula for a certain num-
ber of iterations (ideally all), without involving any dynamic
control flow (e.g. data-dependent conditionals).

To this end, we developed a python tool that identifies
the maximum subsets of the domain within which domain
narrowness, uniform dependencies and uniform inter-iteration
dependencies hold. As shown in Figure 6, the tool produces
both a graphical representation of the three properties for
each iteration (2 images are produced for each iteration: 1 for
domain narrowness and 1 for uniform dependencies/uniform
inter-iteration dependencies) and the corresponding structured
description. The graphical representation is useful for the
designer to understand at a glance if (and roughly how
much) the considered algorithm can benefit from the proposed
implementation approach, while the structured description is
fed to the following phases of the flow to generate the correct
architecture for the algorithm considered.

Domain Narrowness Analysis. In order to evaluate the
presence, level, and location of domain narrowness in the
algorithm, the tool has to check the following fundamental
condition: the value of each element at iteration level L should
only depend, directly or indirectly (e.g., function calls), on
constant values (propagated by the symbolic execution) or
on values of other elements computed at previous iteration
levels (including the initial values), but not, for instance, on
the values of the elements at the same iteration level.

Then the tool has to identify, for any given point P of every
step n, what are the points in n− 1 that P depends upon (i.e.
its domain). At this point, in order to estimate the domain
narrowness, a metric that takes into consideration both the size
and the shape of the different domains has to be evaluated. In
our approach, we have decided to assign, to each point P ′ in
the domain of P at iteration n − 1 (domain(P )), a penalty
w that is directly proportional to the distance (e.g., Cartesian
distance, Manhattan distance, etc.) between P and P ′:

wPP ′ = distance(P, P ′)

Then, the aggregation (e.g., the sum) W of all the w
penalties is a measure of the inverse of the domain narrowness
(DN ) of point P (DN(P )):

W =
∑

P ′∈domain(P ) wPP ′ = 1
DN(P )

Finally, the output is stored for the following phases of the
design flow and a graphical representation is produced where
the darker is the color of a cell, the higher is the number
and the penalties of the elements of its dependencies schema
(that is, the less it is characterized by the domain narrowness
property); in particular, a white cell identifies an element that
only depends on itself (at the previous iteration), while a black
cell identifies an element that does not satisfy the domain
narrowness property (e.g., it depends on other elements at
the same iteration level). The exact values of the domain
narrowness of each element is coded in the picture as a scale
of grey, while it is stated explicitly in the textual representation
of the output. Figure 5 shows that the tool is able to detect that
all the elements of the matrix have high domain narrowness
at all iteration levels, and also that the border depends only on
one element of the previous iterations, while the other cells
have a larger dependencies domain.

Dependencies Analysis. To estimate the uniform dependen-
cies and the uniform inter-iteration dependencies properties,
the first task performed by the tool is the generation, starting
from the input formulas, of a tree representing the dependen-
cies of each element of the input matrix, for each level of
iteration. Then, all the syntax trees of the elements of each
iteration level are compared in order to partition them into
classes, each of whom is characterized by the same syntax
tree, (that is, by the same dependencies schema). In order to
perform a fair comparison among all the syntax trees, they are
pre-processed in the following way:

• the absolute indexes of the array members of the syntax
tree are transformed into indexes relative to the target
element. Let us consider the following syntax trees:

– the first one is array[5][7] + array[5][8] and refers
to the element array[5][7];

– the second one is array[6][2]+array[6][3] and refers
to the element array[6][2];

Even though the two syntax trees are different, they
can be both expressed (by using indexes relative to the
element array[x][y]) as array[x][y] + array[x][y + 1],
and thus they can be correctly detected as equivalent;

• the resulting formula is simplified, in order to facilitate
the detection of equivalent expressions. For instance, the
operations among actual values are performed and the
result is stored in the tree (e.g., 3 ∗ 2 + 1 is substituted
with the corresponding result, 7, so that the two syntax
trees a+b+3∗2+1 and a+b+2∗2+3 can be correctly
detected as equivalent);

• each formula is normalized (by taking into account the
lexical order of the operands) in order to convert all its
possible representations into a canonical form (so that the
two syntax trees a+b and b+a can be correctly detected
as equivalent).

An example of the output of this phase is shown in Figure
5, where two distinct classes (each one characterized by cells
of the same color) of elements are detected:

• class A, characterized by: e[x][y] (n+ 1) = e[x][y] n;
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• class B, characterized by: e[x][y] (n + 1) = f((e[x +
1][y] n∗2+e[x−1][y] n∗ [x][y+1] n−e[x][y−1] n−
7)/(e[x][y] n+ 3)).

The partition of the matrix in the equivalence classes of
points that have domains with equal shape is an inverse
measure of the uniformity of the dependencies schema: if all
the pixels (over all the different iterations) have same shaped
domains, there will be only one class of equivalence. On the
other hand, if they are all different, the number of pixels
becomes equivalent to the number of classes (which is the
situation with the lowest uniformity possible).

Note that the metrics proposed can detect the presence of the
properties even in subparts of the algorithm, and to different
degrees. This significantly widens the set of algorithms that
can be addressed by the proposed synthesis flow. Moreover,
it is not necessary that the properties are evident in the
algorithm code upon inspection, since the tool will exploit
the information coming from the symbolic execution.

For instance, consider the following synthetic example
(which is not a simple ISL where a single stencil is repeated
on the whole data for all the iterations):
for (i=0;i<N;i++){
for(x=0;x<DIM;x++)
for(y=0;y<DIM;y++)
if(x>0 && x<DIM-1 && y>0 && y<DIM-1
&& x<(DIM-1)/2 && i>=(N-1)/2)
m2[x][y]=funct((m1[x+1][y]*2+m1[x-1][y]*

m1[x][y+1]-m1[x][y-1]-7)/(m1[x][y]+3));
else if(x>0 && x<DIM-1 && y>0 && y<DIM-1
&& x>DIM/2 && i>=(N-1)/2)
m2[x][y]=m1[x+1][y]+m1[x-1][y]-funct(m1[x][y]);

else if(x>0 && x<DIM-1 && y>0 && y<DIM-1 &&
x>DIM/2)

m2[x][y]=(m1[x+1][y]+m1[x-1][y])/2+m1[x][y];
else
m2[x][y]=m1[x][y];

for(x=0;x<DIM;x++)
for(y=0;y<DIM;y++)
if(x>0 && x<DIM-1 && y>0 && y<DIM-1)
m1[x][y]=m2[x][y]/2;

else
m1[x][y]=m2[x][y];}

When executed on an input data matrix of 15x15, it pro-
duces the output shown in Figure 6, where it is possible to
observe that:
• the first 2 iterations considerably differ from the other 3;
• the domain narrowness is verified by all the elements at

all the iteration levels, even though with different levels
of locality (3 different classes are identified by the tool);

• without considering the borders, the first two iterations
satisfy both uniform dependencies and uniform inter-
iteration dependencies in the whole data set, while in
the last three iterations the tool automatically identifies
two huge subsets where the two properties locally hold;

• the borders are correctly detected as “special elements”,
so that they can be handled as a separated class of
elements by the proposed approach, since they satisfy
the domain narrowness and uniform (inter-iteration) de-
pendencies properties for all the 5 iterations.

C. Cones Generation
As shown in Algorithm 2, the design flow exploits the infor-

mation about the maximum size of the data matrix subsets that

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4

1

2

3

4

55
5

5
5

5
5

5
5

5
5

5
5

5
5

5

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5

1

2

3

4

5

Domain Narrowness Uniform (Inter-Iteration) Dependencies

Fig. 6. Example of a possible graphical output of the python analyzer

Algorithm 2 Cones Generation
Input (from the symbolic execution phase):

• Sets of output window sizes wo

• Possible heights t of the computational cone
Output (to the architectures generation phase):

• Equation and code implementing the sets of possible cone
structures
wi=∅

for each (xk, yk, N) belonging to wo do
wi = wi + G(xk, yk, N − t)

Synthesize a cone able to generate wo starting from wi

locally satisfy both domain narrowness and uniform (inter-
iteration) dependencies on a certain number of consecutive
iterations to generate all the possible cones. These cones are
characterized by a higher number of output elements (wo)
that spans different numbers of iterations (which is t = N

H ).
For each combination of output window (wo) and cone height
(NH ), a specific computational cone is implemented. To derive
the input window (wi) from wo, it is possible to proceed by
identifying the sets G(x, y,N − t), one for each (x, y,N)
element of wo, which represents the inputs of the cone.
After this phase, it is possible to generate and synthesize the
hardware cone able to produce the desired output window
starting from the elements at the iteration N − t.

The main issues that arise during the synthesis of a cone is
the exponential growth, while performing symbolic execution,
of the number of symbols included in the expressions, that
makes it impractical for complex algorithms. In the proposed
flow, we overcome this issue by exploiting the properties
defined in Section II, which enable an efficient symbolic
execution for the targeted class of algorithms. First, it is not
necessary to find an equation for all the elements of fi+m: if
the uniform dependencies property holds, the dependencies of
the elements in the frame are uniform, which allows tracking
only one element in order to get the desired expressions
for the whole fi+m. Second, if the uniform inter-iteration
dependencies property holds data dependencies between two
consecutive iterations i and i+ 1 are the same for each value
of i ∈ {1, ..., N −1}. As a consequence, it suffices to perform
symbolic execution for just one iteration to find the relation
between fi+1 and fi, which in turn can be used as a building
block to compute the dependencies between any pair of fi+m
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Fig. 7. Example of the data-reuse technique

Algorithm 3 Architectures Generation
Input (from the data dependencies analysis phase):

• Total number N of iterations
• Dependencies structure of the algorithm

Input (from the cones generation phase):
• Equation and code implementing the sets of possible cone

structures
Output (to the design space exploration phase):

• Sets of possible parallel hardware implementations
• of the considered multimedia iterative algorithm

for (p = 0; p < Size(InputMatrix)
Size(wo)

; p++) do
Schedule 1 cone at level N

t
in position p

for (iteration = N
t
− 1 ; iteration > 0; iteration–) do

Schedule all the cones necessary at level iteration in position
p, in order to feed the cones already scheduled at level iteration+1
in position p

and fi during the VHDL generation.
The equations returned by the symbolic execution are

exploited to automatically generate a synthesizable VHDL
description of the cones. During the equations-to-VHDL trans-
lation, the exponential explosion of the number of symbols is
avoided by enforcing data reuse. In fact, a large number of
operations on the same elements is repeated multiple times
to satisfy the data dependencies, as shown in the example in
Figure 7. The first cone, in fact, in order to compute its output
window consisting of C2 and D2, would require to compute
some intermediate results multiple times: for instance, C1

and D1 would have been computed 2 times, B0 and E0 3
times, while C0 and D0 5 times. This redundancy is not
detected by the symbolic execution itself, which would instead
introduce a large number of repeated symbols and operations
in the equations. In our flow, we handle it by unrolling the
dependencies between fi+m and fi through m iterations and,
for each operation between two elements, we store the result
in a register: whenever the operation appears more than once,
the register is reused (as a sort of cache). This generates a
VHDL code with a high degree of resource reuse, which can
be handled by any synthesis tool for FPGAs.

D. Architectures Generation

Algorithm 3 describes how it is possible to generate the
space of all the possible architectures (intended as combi-
nations of different cones) that implement the given input
algorithm. When generating an architecture with a specific set
of cones, two different scenarios are possible, depending on
the height of the considered cones.

If at least one of the cones works on all the iterations of the
algorithm (thus if t = N for that cone), then it is sufficient

Fig. 8. Cone structure and scheduling for N = 12 and H = 3 (thus, t = 4)

to deploy on the target device one or more of those cones
(depending on the available area) that can work in parallel
on different portions of the input data. Then, as soon as their
computation is concluded, the control logic simply stores their
output and feeds them with other portions of the input data,
shifting the location of their output window in order to cover
the whole output data set.

Otherwise, if all the considered cones only span a subset of
the iterations (see e.g. Figure 2), then the flow has to combine
more cones to produce a single output window of the final
iteration starting from the input data fetched by the control
logic. The resulting architecture is similar to the one shown
in Figure 8, where 6 cones spanning t = 4 iterations are
necessary to cover all the N = 12 iterations of the algorithm.
As stated in Algorithm 3, the first cone to be considered is cone
6. Then cones 4 and 5 are instantiated in order to generate the
data required by cone 6. Finally, cones 1 and 2 are required by
cone 4, while cones 2 and 3 by cone 5. The execution order
the flow exploits to perform the whole computation is handled
by the control logic and is then the following: 1, 2, 4, 3, 5,
6. Note that the output of intermediate cones, such as cone 2,
is temporary stored in the on-chip memory in order to avoid
multiple executions of the same computation.

For what concerns the area and computation overhead,
Figure 7 shows what happens when two or more cones are
executed on adjacent output windows. While the area and
computation overhead within a single cone is detected and
resolved during the cones generation phase (see Section V-C),
this does not happen at the architectural level. As shown in
Figure 7, in fact, a portion of the computation (consisting
of C0, D0, E0, F0, D1 and E1 in this case) is performed
in both the cones, thus leading to area and computation
overhead. This redundancy is an essential and unavoidable
part of our approach, which makes it possible to split the
computation and distribute it on a set of cores working in
parallel. The percentage of this overhead can be computed
with the following formula:

(Opcone−based −Opinitial) · 100
Opinitial

(1)

where Opcone−based is the number of operations effectively
performed by the cone-based architectures generated with
our flow and Opinitial is the number of operations of the
initial algorithm (which computes one iteration at a time). The
domain narrowness parameter is a good proxy to estimate
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this overhead, since it directly depends on the shape of the
dependencies schema of the input algorithm. In addition to
this, the computational overhead can be minimized by tuning
some of the parameters that characterize each architectural
solution, such as:
• increasing the size of the output window of each cone;
• reducing the height of each cone (i.e., the number of

iterations it computes).
In particular, experimental results have shown that the com-
putational overhead never exceeds 50% in all the cone-based
architectures characterized by cones with an output window
of more than 7× 7 pixels and spanning less than 5 iterations.
However, in order to automatically select the best trade-offs
among redundant computation, on-chip memory requirements,
area usage and performance, the proposed flow performs a
deep design space exploration. over all the instances of the
proposed architectural template, as described in Section V-E.

E. Design Space Exploration

The main issues that arise when trying to extract the Pareto-
optimal architectures (see Figures 11 and 15) from all the ones
generated in the previous phase of the flow (as described in
Algorithm 3), is the evaluation of the cost and throughput
of each architecture of the solution space. This would indeed
require, in principle, to synthesize each possible combinations
of cones: for typical problem sizes this may take days of CPU
time, making a complete design space exploration unfeasible.
As an example, in a simple scenario with cones spanning 1,
2, 4, 5 or 10 iterations, considering architectures obtained
combining 2 different kinds of cones with output windows
ranging from 1× 1 to 100× 100 elements, the solution space
consists of 5× 5× 100 = 2500 possible architectures.

To address this issue we hereby propose a novel technique
that quickly (generally in the orders of a few minutes) esti-
mates the area requirements of all the cone architectures. The
proposed evaluation only requires a very small number (as
low as two) of circuit syntheses (considering only a single
cone for each synthesis), and its accuracy is related to the
number of syntheses that the designer is willing to perform
(the higher the number, the more accurate the estimation).
Describing the area requirements analytically presents several
challenges, the main one arising from the non-linear growth of
the area with respect to the number of cones in the architecture,
due to the optimization and the logic reuse performed by the
synthesis tool. However, we observed that the trend of the
area occupation follows the growth of the number of registers
allocated into the cones. We captured the observed trend with
the following relation:

Aest
x = Aest

x−1 + (Regx −Regx−1) · Sizereg · α (2)

Where Aest
x is the estimated area requirement for an archi-

tecture whose cones have an output window consisting of x
elements. Regx represents the number of registers that have
been used to build the HDL of a cone with an output window
consisting of x elements: this quantity is known as soon as the
VHDL description of the algorithm is generated and data reuse
is enforced. Sizereg represents the average size (typically 32-
bit) of the registers allocated during the generation of the

HDL of the cone architecture. Finally, the α correction factor
takes into account the degree of logic reuse performed by
the synthesis tool, which can be experimentally evaluated by
interpolating two initial syntheses X and Y in the following
way (if a higher accuracy is needed, more initial synthesis can
be performed):

α =
AX −AY

(RegX −RegY ) · Sizereg
(3)

However, we have observed in our experiments that the results
of two synthesis are generally sufficient to obtain a value of α
that makes it possible to perform very accurate estimations, as
proved in Section VI. On the other hand, appraising throughput
follows the traditional approach of summing the delays of the
operations included in each cone, and counting the number
of cones running in parallel. This information is immediately
available, as well as the information about latency, after
the VHDL generation phase. Once the architectures space
is completely characterized (that is, area and throughput of
each possible implementation have been estimated) the flow
finally extracts the Pareto set, exhaustively exploring a set of
a (typically) few hundreds/thousands solutions.

VI. EXPERIMENTAL RESULTS

As mentioned in Section I, we validated proposed flow on
different case studies, of which we discuss the most signif-
icant two, characterized by different complexity: an iterative
gaussian filter [13] and the Chambolle algorithm [18].

A. Iterative Gaussian Filter (IGF)

The first case considered is the blur effect, essentially
consisting in convolving an image f with a Gaussian kernel
G. Convolution is a fundamental mathematical operation that
is used in many common image processing operators [10].
In image processing, it is used to implement operations in
which the values of the output pixels are calculated as linear
combination of a subset of the input pixels.

Convolution belongs to a class of algorithms commonly
referred to as spatial filters: a kernel (or mask) is moved
across the original image, and each pixel is computed as the
weighted sum of the neighboring elements, where the weights
are the values in the mask. The semantic of the weights in
the mask depends on the operation to be performed on the
original image. For example, a blurring filter can be obtained
by taking the kernel values from a gaussian distribution. In the
case of blurring filters, and more generally in gaussian kernels,
the convolution with a large kernel can be approximated by
an iterative application of a smaller kernel [11].

The first task performed by the proposed design flow is
the symbolic execution of the input algorithm, immediately
followed by the data dependencies analysis phase. In order
to show how it is possible to automatically extract, from the
input algorithm, information about the portions of code that
can be optimized thanks to the proposed architecture, we have
performed the symbolic execution and the data dependencies
analysis phases on a piece of code performing five iterations
of the IGF applications, thus consisting of the following tasks:
• PRE: generic not-parallelizable pre-processing;
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Fig. 9. Domain narrowness, uniform (inter-iteration) dependencies and
optimization index estimation for the IGF on different kernel sizes

• IGF In: n− th iteration of the IGF;
• POST: generic not-parallelizable post-processing.

Figure 9 summarizes the results obtained by the proposed
design flow when provided with the same IGF running on
1024×768 images with kernels of different sizes (each bar of
Figure 9 refers to a different kernel size: 3×3, 5×5, 15×15,
55×55 or 101×101). The level DN of domain narrowness has
been computed as 100 - the percentage of elements belonging
to the dependencies schema of an element, averaged on all
the elements of the data structure. Thus, bars close to 100
correspond to computational iterations that, for a particular
kernel size, show a very high level of domain narrowness.
The level UD of uniform dependencies has been computed as
the percentage of elements that share the same dependencies
schema within each computational iteration (in case multiple
sets of such elements exist, the larger one has been selected):
a value close to 0 represents a situation in which almost each
element is characterized by a different dependencies schema,
while a value close to 100 refers to a scenario in which almost
all the elements share the same dependencies schema. The
level UIID of uniform inter-iteration dependencies has been
computed by taking into consideration, for each iteration i,
both the previous (i− 1) and the subsequent (i+1) iterations
(if existing): then, if the three iterations perform the same
computation (i.e., they would produce the same output if fed
with the same input data), the UIID of iteration i is set to 100.
If only two of them (i and i−1, or i and i+1) perform the same
computation, the UIID of iteration i is set to 50. Otherwise, the
UIID of iteration i is set to 0. Finally, an optimization index
has been computed as DN∗UD∗UIID

10000 in order to estimate how
much a particular configuration of image and kernel size is
suitable for the proposed optimizations (the higher, the better).
Of course other more complex aggregation functions can be
used in place of the proposed one, even though in all our

experiments a simple multiplication among the three metrics
has proved to be sufficient to correctly identify the iterations
to be processed with the proposed flow.

As can be seen in Figure 9, the iterations of the IGF have
been correctly recognized by the proposed design flow as
portions of code that can be optimized with the proposed
technique (high optimization index values). In addition, the
optimization index provides the designer with an estimate of
how much the different algorithm tasks are suitable for the
proposed synthesis. The optimization index corresponding to
the iterations of the IGF decreases with the size of the kernel,
while it grows with the size of the input image.

Once the algorithm portion that is most susceptible to
optimization has been selected, the flow proceeds with the
generation of the different cones and with the architecture
space exploration, which in turn requires performance and area
estimation of each possible configuration. To test the precision
of the estimation technique, we previously performed most
of the syntheses and compared them with the corresponding
estimations [44]: results are presented in Figure 10, w.r.t.
different output window sizes and number of iterations. The
maximum estimation error is 6.58%, and the average error is
2.93%, suggesting that the proposed model provides a very
accurate evaluation without requiring a full synthesis. Let us
now analyze the Pareto set of optimal cone architectures.
Figure 11 shows the Pareto curve with respect to performance
(in this case, the time to process a single frame) and area
requirements (i.e., the number of slices on a FPGA), for the
convolution of a 1024×768 image. The set of Pareto solutions
is reported into the zoomed window.

If the design is targeted to a specific FPGA device, and
hence the amount of resources is known in advance, the pro-
posed design flow tries to identify, by exploiting the estimated
area usage of each kind of cone, the number of cone instances
that would fit the target device. In this way, the flow is able to
estimate the maximum throughput achievable for each kind of
cone, as shown in Figure 12. In particular, this chart shows the
throughput variation on a Xilinx Virtex-6 XC6VLX760 FPGA
when the size of the output window is varied. The cones that
lead to best performances are those whose depth is a divider of
the number of overall iterations (in the example, 10 iterations
are best performed with cones of depth 1, 2 and 5). The reason
why cones of depth 3 and 4 perform worse is that they are not
dividers of 10, causing allocation of additional specific cones
(of depth 1 and 2, respectively) to implement the remaining
iterations, and making the exploitation of the available area
suboptimal. Even by considering a single cone depth, the
trend reported in Figure 12 is not monotone because, although
larger cones typically lead to better throughputs, it may happen
that smaller cones allow to better fit the device area. It is
finally worth noting that, among all the implementations, the
area required by the control logic never exceeds 2.3% of the
resources required by the full system.

A comparison between our cone-based solutions and the
ones presented in the literature shows a significant speed-up
on the same device (or a comparable one) and with a similar
resource usage. For instance, [16] presents a 20 iterations
convolution with a 3 × 3 kernel working on a Xilinx Virtex-
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Fig. 10. IGF area estimation#label total_req_areaspf fps est_throughputarea_limit core_num est_freq est_period est_core_latencymissing_iterationstop_lev_inputsest_exec_timeest_area_efficiencytop_lev_area_efficiencytop_lev_execution_time
blur_4_7to10 259113,378 2,99395052 0,33400686 793166,081 D1 1 97162844,9 1,03ED08 5,15ED08 1 400 5,04ED06 3,06107731 1870,09933 2,57ED07
blur_1_6to10 1134177,57 2,81064743 0,35578991 844894,304 D1 7 97162844,9 1,03ED08 5,15ED08 2 289 1,18ED06 0,74494006 1379,37722 2,06ED07
blur_1_5to10 1583096 2,81064743 0,35578991 844894,304 D1 8 97162844,9 1,03ED08 5,15ED08 0 441 1,18ED06 0,53369745 D1 0
blur_4_9to10 90600 2,59679382 0,38509026 914473,835 D1 6 97162844,9 1,03ED08 5,15ED08 0 484 4,37ED06 10,0935302 D1 0
blur_1_6to10 1255448,57 2,5662433 0,38967467 925360,428 D1 8 97162844,9 1,03ED08 5,15ED08 2 289 1,08ED06 0,73707554 1379,37722 2,06ED07
blur_1_5to10 1780983 2,44404124 0,4091584 971628,449 D1 9 97162844,9 1,03ED08 5,15ED08 0 441 1,03ED06 0,5455574 D1 0
blur_1_6to10 1376719,57 2,32183918 0,43069305 1022766,79 D1 9 97162844,9 1,03ED08 5,15ED08 2 289 9,78ED07 0,74290132 1379,37722 2,06ED07
blur_4_8to10 132516 2,26073815 0,4423334 1050409,13 D1 3 97162844,9 1,03ED08 5,15ED08 0 484 3,81ED06 7,92665893 D1 0
blur_4_9to10 105700 2,23018763 0,44839277 1064798,3 D1 7 97162844,9 1,03ED08 5,15ED08 0 484 3,76ED06 10,0737777 D1 0
blur_1_5to10 1978870 2,19963712 0,45462044 1079587,17 D1 10 97162844,9 1,03ED08 5,15ED08 0 441 9,26ED07 0,5455574 D1 0
blur_1_6to10 1497990,57 2,07743505 0,48136282 1143092,29 D1 10 97162844,9 1,03ED08 5,15ED08 2 289 8,75ED07 0,76308377 1379,37722 2,06ED07
blur_1_5to10 2176757 2,07743505 0,48136282 1143092,29 D1 11 97162844,9 1,03ED08 5,15ED08 0 441 8,75ED07 0,52513546 D1 0
blur_4_9to10 120800 1,95523299 0,511448 1214535,56 D1 8 97162844,9 1,03ED08 5,15ED08 0 484 3,29ED06 10,0541023 D1 0
blur_1_6to10 1619261,57 1,95523299 0,511448 1214535,56 D1 11 97162844,9 1,03ED08 5,15ED08 2 289 8,23ED07 0,7500552 1379,37722 2,06ED07
blur_1_6to10 1740532,57 1,83303093 0,54554453 1295504,6 D1 12 97162844,9 1,03ED08 5,15ED08 2 289 7,72ED07 0,74431506 1379,37722 2,06ED07
blur_1_5to10 2374644 1,83303093 0,54554453 1295504,6 D1 12 97162844,9 1,03ED08 5,15ED08 0 441 7,72ED07 0,5455574 D1 0
blur_4_9to10 135900 1,74137938 0,5742574 1363689,05 D1 9 97162844,9 1,03ED08 5,15ED08 0 484 2,93ED06 10,0345037 D1 0
blur_9_9to10 54656 1,71082887 0,584512 1388040,64 D1 2 97162844,9 1,03ED08 5,15ED08 0 529 6,48ED06 25,3959427 D1 0
blur_1_6to10 1861803,57 1,71082887 0,584512 1388040,64 D1 13 97162844,9 1,03ED08 5,15ED08 2 289 7,20ED07 0,74553549 1379,37722 2,06ED07
blur_1_6to10 1983074,57 1,71082887 0,584512 1388040,64 D1 14 97162844,9 1,03ED08 5,15ED08 2 289 7,20ED07 0,69994375 1379,37722 2,06ED07
blur_1_5to10 2572531 1,71082887 0,584512 1388040,64 D1 13 97162844,9 1,03ED08 5,15ED08 0 441 7,20ED07 0,53956226 D1 0
blur_4_5to10 244504 1,61917732 0,61759758 1466608,98 D1 1 97162844,9 1,03ED08 5,15ED08 0 484 2,73ED06 5,99830261 D1 0
blur_4_7to10 349889,378 1,58862681 0,62947446 1494813 D1 2 97162844,9 1,03ED08 5,15ED08 1 400 2,68ED06 4,27224459 1870,09933 2,57ED07
blur_1_6to10 2104345,57 1,58862681 0,62947446 1494813 D1 15 97162844,9 1,03ED08 5,15ED08 2 289 6,69ED07 0,71034578 1379,37722 2,06ED07
blur_1_6to10 2225616,57 1,58862681 0,62947446 1494813 D1 16 97162844,9 1,03ED08 5,15ED08 2 289 6,69ED07 0,67163995 1379,37722 2,06ED07
blur_1_5to10 2770418 1,58862681 0,62947446 1494813 D1 14 97162844,9 1,03ED08 5,15ED08 0 441 6,69ED07 0,53956226 D1 0
blur_4_9to10 151000 1,55807629 0,6418171 1524123,06 D1 10 97162844,9 1,03ED08 5,15ED08 0 484 2,62ED06 10,0935302 D1 0
blur_9_8to10 62718,8132 1,49358076 0,66953192 1589937,46 D1 1 97162844,9 1,03ED08 5,15ED08 0 529 5,66ED06 25,3502479 D1 0
blur_1_5to10 2968305 1,46642474 0,68193066 1619380,75 D1 15 97162844,9 1,03ED08 5,15ED08 0 441 6,18ED07 0,5455574 D1 0
blur_1_5to10 3166192 1,46642474 0,68193066 1619380,75 D1 16 97162844,9 1,03ED08 5,15ED08 0 441 6,18ED07 0,51146006 D1 0
blur_4_9to10 166100 1,40532371 0,71157982 1689788,61 D1 11 97162844,9 1,03ED08 5,15ED08 0 484 2,37ED06 10,1733209 D1 0
blur_4_8to10 220860 1,34422268 0,74392436 1766597,18 D1 5 97162844,9 1,03ED08 5,15ED08 0 484 2,26ED06 7,99871946 D1 0
blur_4_6to10 442172,572 1,34422268 0,74392436 1766597,18 D1 1 97162844,9 1,03ED08 5,15ED08 2 324 2,26ED06 3,99526631 1379,37722 2,06ED07
blur_4_9to10 181200 1,31367217 0,76122493 1807680,84 D1 12 97162844,9 1,03ED08 5,15ED08 0 484 2,21ED06 9,97616355 D1 0
blur_16_9to10 41037,245 1,22202062 0,8183168 1943256,9 D1 1 97162844,9 1,03ED08 5,15ED08 0 576 8,23ED06 47,3534931 D1 0
blur_4_9to10 196300 1,1914701 0,83929928 1993084 D1 13 97162844,9 1,03ED08 5,15ED08 0 484 2,01ED06 10,1532552 D1 0
blur_9_9to10 81984 1,14055258 0,876768 2082060,96 D1 3 97162844,9 1,03ED08 5,15ED08 0 529 4,32ED06 25,3959427 D1 0
blur_4_9to10 211400 1,13036907 0,88466681 2100818,27 D1 14 97162844,9 1,03ED08 5,15ED08 0 484 1,90ED06 9,93764555 D1 0
blur_4_8to10 265032 1,13036907 0,88466681 2100818,27 D1 6 97162844,9 1,03ED08 5,15ED08 0 484 1,90ED06 7,92665893 D1 0
blur_4_7to10 440665,378 1,09981856 0,90924089 2159174,33 D1 3 97162844,9 1,03ED08 5,15ED08 1 400 1,85ED06 4,8998048 1870,09933 2,57ED07
blur_4_9to10 226500 1,03871753 0,96272564 2286184,59 D1 15 97162844,9 1,03ED08 5,15ED08 0 484 1,75ED06 10,0935302 D1 0
blur_4_9to10 241600 0,9776165 1,022896 2429071,12 D1 16 97162844,9 1,03ED08 5,15ED08 0 484 1,65ED06 10,0541023 D1 0
blur_4_8to10 309204 0,9776165 1,022896 2429071,12 D1 7 97162844,9 1,03ED08 5,15ED08 0 484 1,65ED06 7,85588519 D1 0
blur_4_8to10 353376 0,85541443 1,169024 2776081,28 D1 8 97162844,9 1,03ED08 5,15ED08 0 484 1,44ED06 7,85588519 D1 0
blur_4_5to10 489008 0,82486392 1,21232118 2878899,11 D1 2 97162844,9 1,03ED08 5,15ED08 0 484 1,39ED06 5,88722293 D1 0
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Fig. 11. IGF Pareto curve (image size: 1024× 768)

II Pro at 13.5fps with 1024 × 768 images and at less than
5fps with Full-HD images, while our architecture is able to
achieve, on the same FPGA device, up to 35fps on Full-HD
images. With a more modern FPGA such as a Virtex 6, our
architecture is able to reach 110fps on 1024× 768 images.

B. Chambolle Algorithm

For what concerns Chambolle [18], we have applied the
proposed design flow to a portion of the optical flow algorithm,
consisting of the following steps:
• Acquisition: data acquisition and filtering phase;
• PRE: generic not-parallelizable pre-processing;
• Chamb In: n− th iteration of Chambolle;
• POST: generic not-parallelizable post-processing;
• Visualization: data rendering and visualization phase.
The results are presented in Figure 13. Even though the

data acquisition and visualization phases are parallel by con-
struction, since they work on each element of the data matrix
without taking into account the values of the other elements,
the flow is able to automatically detect that the phases that

Estimated)execution)time
E_EXEC_TIME9E_EXEC_TIME8E_EXEC_TIME7E_EXEC_TIME6E_EXEC_TIME5

1 3,09E>07 9,26E>07 1,44E>06 1,60E>06 1,54E>06 )
4 3,60E>07 4,63E>07 8,75E>07 1,18E>06 7,20E>07 )
9 3,09E>07 3,09E>07 8,23E>07 1,18E>06 3,60E>07 )
16 3,09E>07 2,57E>07 8,23E>07 1,24E>06 3,09E>07 )
25 3,09E>07 2,57E>07 8,75E>07 1,34E>06 3,09E>07 )
36 3,09E>07 2,57E>07 9,26E>07 1,39E>06 2,57E>07 )
49 3,60E>07 2,57E>07 9,78E>07 1,49E>06 2,06E>07 )
64 3,60E>07 3,09E>07 1,03E>06 1,65E>06 3,60E>07 )
81 3,60E>07 3,09E>07 1,13E>06 7,20E>07 3,09E>07 )

100

Estimated)throughput
E_THR9 E_THR8 E_THR7 E_THR6 E_THR5 E_THR9 E_THR8 E_THR7 E_THR6

1 3238761,5 1079587,17 694020,321 626857,064 647752,3 1 1,36386133 0,45462044 0,292256 0,26397316
4 11104325,1 8636697,33 4572369,17 3379577,21 5552162,57 4 4,67609598 3,63696354 1,92545129 1,42315965
9 29148853,5 29148853,5 10930820,1 7604048,73 24984731,6 9 12,274752 12,274752 4,60303198 3,20210921
16 51820184 62184220,8 19432569 12955046 51820184 16 21,8217813 26,1861375 8,18316797 5,45544532
25 80969037,4 97162844,9 28577307,3 18685162,5 80969037,4 25 34,0965332 40,9158399 12,0340705 7,86843074
36 116595414 139914497 38865138 25910092 139914497 36 49,0990078 58,9188094 16,3663359 10,9108906
49 136027983 190439176 50115572,6 32834340,7 238048970 49 57,2821758 80,1950461 21,1039595 13,8267321
64 177669202 207280736 62184220,8 38865138 177669202 64 74,8175358 87,287125 26,1861375 16,3663359
81 224862584 262339681 71547185,8 112431292 262339681 81 94,6909437 110,472768 30,1289366 47,3454718
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Fig. 12. IGF throughput (image size: 1024× 768)

Fig. 13. Domain narrowness, uniform (inter-iteration) dependencies and
optimization index estimation for Chambolle on different image sizes
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Fig. 14. Chambolle area estimation

present a high value of the optimization index (computed as
described in Section VI-A) are only the four iterations of
the Chambolle algorithm, whose dependencies schemas are
then selected to be the input of the following steps of the
synthesis flow (cones and architecture generation and design
space exploration).

As for the gaussian filter, we initially estimated the area of
each possible cone architecture for Chambolle and compared
the results with respect to the actual synthesis results [44].
Figure 14 reports the results, which are again very accurate,
as the maximum area estimation error we observed is 6.36%,
and the average one is 2.19%.

After characterizing the architectures, we extracted the
Pareto curve illustrated in Figure 15. When a specific FPGA
is targeted, the behavior of the throughput is similar to that
discussed for the iterative filter. In this example, it can be
observed that the best solution in terms of throughput is not
the one with the largest output window (9× 9), but rather the
solution with 8 × 8 cones, since in this case 2 instances of
the cone can be deployed simultaneously on the device (see
Figure 16). The performance of the proposed architectures are
competitive with respect to state-of-the-art implementations.
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#label total_req_areaspf fps est_throughputarea_limit core_num est_freq est_period est_core_latencymissing_iterations
chamb_81_8to11822815,073 0,01786477 55,9760804 87446560,4 B1 3 97162844,9 1,03EB08 3,09EB07 0
chamb_81_9to111332357,23 0,01786477 55,9760804 87446560,4 B1 7 97162844,9 1,03EB08 3,09EB07 0
chamb_64_8to111114158,21 0,01884175 53,0736169 82912294,3 B1 5 97162844,9 1,03EB08 3,09EB07 0
chamb_64_9to111507889,14 0,01884175 53,0736169 82912294,3 B1 10 97162844,9 1,03EB08 3,09EB07 0
chamb_64_9to111658678,05 0,01884175 53,0736169 82912294,3 B1 11 97162844,9 1,03EB08 3,09EB07 0
chamb_25_5to111837581,48 0,01929396 51,829704 80969037,4 B1 5 97162844,9 1,03EB08 3,09EB07 0
chamb_25_5to112205097,78 0,01929396 51,829704 80969037,4 B1 6 97162844,9 1,03EB08 3,09EB07 0
chamb_25_5to112572614,07 0,01929396 51,829704 80969037,4 B1 7 97162844,9 1,03EB08 3,09EB07 0
chamb_25_5to112940130,37 0,01929396 51,829704 80969037,4 B1 8 97162844,9 1,03EB08 3,09EB07 0
chamb_25_5to113307646,66 0,01929396 51,829704 80969037,4 B1 9 97162844,9 1,03EB08 3,09EB07 0
chamb_49_5to111052163,02 0,01968771 50,79311 79349656,7 B1 2 97162844,9 1,03EB08 3,09EB07 0
chamb_49_8to111238519,04 0,01968771 50,79311 79349656,7 B1 7 97162844,9 1,03EB08 3,09EB07 0
chamb_49_8to111415450,33 0,01968771 50,79311 79349656,7 B1 8 97162844,9 1,03EB08 3,09EB07 0
chamb_49_9to111738172,69 0,01968771 50,79311 79349656,7 B1 15 97162844,9 1,03EB08 3,09EB07 0
chamb_49_9to111854050,87 0,01968771 50,79311 79349656,7 B1 16 97162844,9 1,03EB08 3,09EB07 0
chamb_36_5to111328060,2 0,02009787 49,7565159 77730275,9 B1 3 97162844,9 1,03EB08 3,09EB07 0
chamb_36_8to111502277,02 0,02009787 49,7565159 77730275,9 B1 11 97162844,9 1,03EB08 3,09EB07 0
chamb_36_8to111638847,66 0,02009787 49,7565159 77730275,9 B1 12 97162844,9 1,03EB08 3,09EB07 0
chamb_36_8to111775418,3 0,02009787 49,7565159 77730275,9 B1 13 97162844,9 1,03EB08 3,09EB07 0
chamb_36_8to111911988,94 0,02009787 49,7565159 77730275,9 B1 14 97162844,9 1,03EB08 3,09EB07 0
chamb_36_8to112048559,57 0,02009787 49,7565159 77730275,9 B1 15 97162844,9 1,03EB08 3,09EB07 0
chamb_81_9to111142020,48 0,02084224 47,9794975 74954194,7 B1 6 97162844,9 1,03EB08 3,09EB07 0
chamb_64_5to11617700,624 0,0226101 44,2280141 69093578,6 B1 1 97162844,9 1,03EB08 3,09EB07 0
chamb_64_8to11891326,57 0,0226101 44,2280141 69093578,6 B1 4 97162844,9 1,03EB08 3,09EB07 0
chamb_64_9to111206311,31 0,0226101 44,2280141 69093578,6 B1 8 97162844,9 1,03EB08 3,09EB07 0
chamb_64_9to111357100,22 0,0226101 44,2280141 69093578,6 B1 9 97162844,9 1,03EB08 3,09EB07 0
chamb_81_9to11951683,736 0,0238197 41,9820603 65584920,3 B1 5 97162844,9 1,03EB08 3,09EB07 0
chamb_81_6to112498846,41 0,0238197 41,9820603 65584920,3 B1 4 97162844,9 1,03EB08 3,09EB07 2
chamb_81_6to113054990,09 0,0238197 41,9820603 65584920,3 B1 5 97162844,9 1,03EB08 3,09EB07 2
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#label total_req_areaspf fps est_throughputarea_limit core_num est_freq est_period est_core_latencymissing_iterationstop_lev_inputsest_exec_timeest_area_efficiencytop_lev_area_efficiencytop_lev_execution_time
blur_4_7to10 259113,378 2,99395052 0,33400686 793166,081 D1 1 97162844,9 1,03ED08 5,15ED08 1 400 5,04ED06 3,06107731 1870,09933 2,57ED07
blur_1_6to10 1134177,57 2,81064743 0,35578991 844894,304 D1 7 97162844,9 1,03ED08 5,15ED08 2 289 1,18ED06 0,74494006 1379,37722 2,06ED07
blur_1_5to10 1583096 2,81064743 0,35578991 844894,304 D1 8 97162844,9 1,03ED08 5,15ED08 0 441 1,18ED06 0,53369745 D1 0
blur_4_9to10 90600 2,59679382 0,38509026 914473,835 D1 6 97162844,9 1,03ED08 5,15ED08 0 484 4,37ED06 10,0935302 D1 0
blur_1_6to10 1255448,57 2,5662433 0,38967467 925360,428 D1 8 97162844,9 1,03ED08 5,15ED08 2 289 1,08ED06 0,73707554 1379,37722 2,06ED07
blur_1_5to10 1780983 2,44404124 0,4091584 971628,449 D1 9 97162844,9 1,03ED08 5,15ED08 0 441 1,03ED06 0,5455574 D1 0
blur_1_6to10 1376719,57 2,32183918 0,43069305 1022766,79 D1 9 97162844,9 1,03ED08 5,15ED08 2 289 9,78ED07 0,74290132 1379,37722 2,06ED07
blur_4_8to10 132516 2,26073815 0,4423334 1050409,13 D1 3 97162844,9 1,03ED08 5,15ED08 0 484 3,81ED06 7,92665893 D1 0
blur_4_9to10 105700 2,23018763 0,44839277 1064798,3 D1 7 97162844,9 1,03ED08 5,15ED08 0 484 3,76ED06 10,0737777 D1 0
blur_1_5to10 1978870 2,19963712 0,45462044 1079587,17 D1 10 97162844,9 1,03ED08 5,15ED08 0 441 9,26ED07 0,5455574 D1 0
blur_1_6to10 1497990,57 2,07743505 0,48136282 1143092,29 D1 10 97162844,9 1,03ED08 5,15ED08 2 289 8,75ED07 0,76308377 1379,37722 2,06ED07
blur_1_5to10 2176757 2,07743505 0,48136282 1143092,29 D1 11 97162844,9 1,03ED08 5,15ED08 0 441 8,75ED07 0,52513546 D1 0
blur_4_9to10 120800 1,95523299 0,511448 1214535,56 D1 8 97162844,9 1,03ED08 5,15ED08 0 484 3,29ED06 10,0541023 D1 0
blur_1_6to10 1619261,57 1,95523299 0,511448 1214535,56 D1 11 97162844,9 1,03ED08 5,15ED08 2 289 8,23ED07 0,7500552 1379,37722 2,06ED07
blur_1_6to10 1740532,57 1,83303093 0,54554453 1295504,6 D1 12 97162844,9 1,03ED08 5,15ED08 2 289 7,72ED07 0,74431506 1379,37722 2,06ED07
blur_1_5to10 2374644 1,83303093 0,54554453 1295504,6 D1 12 97162844,9 1,03ED08 5,15ED08 0 441 7,72ED07 0,5455574 D1 0
blur_4_9to10 135900 1,74137938 0,5742574 1363689,05 D1 9 97162844,9 1,03ED08 5,15ED08 0 484 2,93ED06 10,0345037 D1 0
blur_9_9to10 54656 1,71082887 0,584512 1388040,64 D1 2 97162844,9 1,03ED08 5,15ED08 0 529 6,48ED06 25,3959427 D1 0
blur_1_6to10 1861803,57 1,71082887 0,584512 1388040,64 D1 13 97162844,9 1,03ED08 5,15ED08 2 289 7,20ED07 0,74553549 1379,37722 2,06ED07
blur_1_6to10 1983074,57 1,71082887 0,584512 1388040,64 D1 14 97162844,9 1,03ED08 5,15ED08 2 289 7,20ED07 0,69994375 1379,37722 2,06ED07
blur_1_5to10 2572531 1,71082887 0,584512 1388040,64 D1 13 97162844,9 1,03ED08 5,15ED08 0 441 7,20ED07 0,53956226 D1 0
blur_4_5to10 244504 1,61917732 0,61759758 1466608,98 D1 1 97162844,9 1,03ED08 5,15ED08 0 484 2,73ED06 5,99830261 D1 0
blur_4_7to10 349889,378 1,58862681 0,62947446 1494813 D1 2 97162844,9 1,03ED08 5,15ED08 1 400 2,68ED06 4,27224459 1870,09933 2,57ED07
blur_1_6to10 2104345,57 1,58862681 0,62947446 1494813 D1 15 97162844,9 1,03ED08 5,15ED08 2 289 6,69ED07 0,71034578 1379,37722 2,06ED07
blur_1_6to10 2225616,57 1,58862681 0,62947446 1494813 D1 16 97162844,9 1,03ED08 5,15ED08 2 289 6,69ED07 0,67163995 1379,37722 2,06ED07
blur_1_5to10 2770418 1,58862681 0,62947446 1494813 D1 14 97162844,9 1,03ED08 5,15ED08 0 441 6,69ED07 0,53956226 D1 0
blur_4_9to10 151000 1,55807629 0,6418171 1524123,06 D1 10 97162844,9 1,03ED08 5,15ED08 0 484 2,62ED06 10,0935302 D1 0
blur_9_8to10 62718,8132 1,49358076 0,66953192 1589937,46 D1 1 97162844,9 1,03ED08 5,15ED08 0 529 5,66ED06 25,3502479 D1 0
blur_1_5to10 2968305 1,46642474 0,68193066 1619380,75 D1 15 97162844,9 1,03ED08 5,15ED08 0 441 6,18ED07 0,5455574 D1 0
blur_1_5to10 3166192 1,46642474 0,68193066 1619380,75 D1 16 97162844,9 1,03ED08 5,15ED08 0 441 6,18ED07 0,51146006 D1 0
blur_4_9to10 166100 1,40532371 0,71157982 1689788,61 D1 11 97162844,9 1,03ED08 5,15ED08 0 484 2,37ED06 10,1733209 D1 0
blur_4_8to10 220860 1,34422268 0,74392436 1766597,18 D1 5 97162844,9 1,03ED08 5,15ED08 0 484 2,26ED06 7,99871946 D1 0
blur_4_6to10 442172,572 1,34422268 0,74392436 1766597,18 D1 1 97162844,9 1,03ED08 5,15ED08 2 324 2,26ED06 3,99526631 1379,37722 2,06ED07
blur_4_9to10 181200 1,31367217 0,76122493 1807680,84 D1 12 97162844,9 1,03ED08 5,15ED08 0 484 2,21ED06 9,97616355 D1 0
blur_16_9to10 41037,245 1,22202062 0,8183168 1943256,9 D1 1 97162844,9 1,03ED08 5,15ED08 0 576 8,23ED06 47,3534931 D1 0
blur_4_9to10 196300 1,1914701 0,83929928 1993084 D1 13 97162844,9 1,03ED08 5,15ED08 0 484 2,01ED06 10,1532552 D1 0
blur_9_9to10 81984 1,14055258 0,876768 2082060,96 D1 3 97162844,9 1,03ED08 5,15ED08 0 529 4,32ED06 25,3959427 D1 0
blur_4_9to10 211400 1,13036907 0,88466681 2100818,27 D1 14 97162844,9 1,03ED08 5,15ED08 0 484 1,90ED06 9,93764555 D1 0
blur_4_8to10 265032 1,13036907 0,88466681 2100818,27 D1 6 97162844,9 1,03ED08 5,15ED08 0 484 1,90ED06 7,92665893 D1 0
blur_4_7to10 440665,378 1,09981856 0,90924089 2159174,33 D1 3 97162844,9 1,03ED08 5,15ED08 1 400 1,85ED06 4,8998048 1870,09933 2,57ED07
blur_4_9to10 226500 1,03871753 0,96272564 2286184,59 D1 15 97162844,9 1,03ED08 5,15ED08 0 484 1,75ED06 10,0935302 D1 0
blur_4_9to10 241600 0,9776165 1,022896 2429071,12 D1 16 97162844,9 1,03ED08 5,15ED08 0 484 1,65ED06 10,0541023 D1 0
blur_4_8to10 309204 0,9776165 1,022896 2429071,12 D1 7 97162844,9 1,03ED08 5,15ED08 0 484 1,65ED06 7,85588519 D1 0
blur_4_8to10 353376 0,85541443 1,169024 2776081,28 D1 8 97162844,9 1,03ED08 5,15ED08 0 484 1,44ED06 7,85588519 D1 0
blur_4_5to10 489008 0,82486392 1,21232118 2878899,11 D1 2 97162844,9 1,03ED08 5,15ED08 0 484 1,39ED06 5,88722293 D1 0
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Fig. 15. Chambolle Pareto curve (image size: 1024× 768)
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Fig. 16. Chambolle throughput (image size: 1024× 768)

For example, the architectures in [3], [20] and [21], are unable
to reach the real-time threshold (i.e., 30fps) even on small
images because of their intrinsic lack of parallelism.

As a baseline comparison, we implemented the Chambolle
kernel using Vivado HLS, a state-of-the-art commercial tool.
The loop manipulation techniques offered by the tool (flatten-
ing, unrolling and pipelining) are not effective on the complex
stencil shape, leading to an implementation that processes
one pixel at a time. The corresponding hardware requires
a relatively low area (33kLUTs), but performs poorly in
terms of throughput (0.14fps). Another comparison point
we considered is the manually-optimized implementation dis-
cussed in [41]. The work represents a reasonable upper bound,
because it features a partial loop unrolling, but also a set of
application-specific optimizations – such as an approximated
LUT-based square root – that cannot be replicated by an
automatic HLS tool. The hardware in [41] reaches 38fps
on 1024 × 768 images and 99fps on 512 × 512 resolutions,
but it required several months of manual design efforts. Our
flow automatically obtained comparable results – 24fps on
1024× 768 images and 72fps on 512× 512 images – using
an automated procedure, thus positioning itself as an ideal
tradeoff between performance and productivity.

VII. CONCLUDING REMARKS

In this paper, we consider the synthesis of a wide set of
iterative bidimensional data processing algorithms on custom
hardware platform. We propose both a novel architectural tem-
plate and an analysis tool that automatically extracts subparts
of the algorithm susceptible of optimization.

Experimental results show that the performance of the
solutions synthesized are at least comparable to (and, in
some cases, significantly better than) state-of-the-art manual
implementations, both in performance (in terms of fps) and

required area. Since the framerate metric implicitly captures
the (bad) side effects of computational redundancy (such as
resource wasting, throughput reduction, etc.), this shows how
well redundancy is compensated by the proposed approach.
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