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The lamplighter group Z3 ≀ Z generated by a

bireversible automaton

Ievgen Bondarenko Daniele D’Angeli Emanuele Rodaro

Abstract

We construct a bireversible self-dual automaton with 3 states over an alphabet

with 3 letters which generates the lamplighter group Z3 ≀ Z.
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1 Introduction

Groups generated by automata (or automaton groups) are interesting from several points
of view. First of all, automaton groups provide simple examples of groups with many ex-
traordinary properties: finitely generated infinite torsion groups, groups of intermediate
growth, just-infinite groups, groups with non-uniformly exponential growth. At the same
time, groups generated by automata arise in various areas of mathematics: in fractal geom-
etry via limit spaces of automaton groups, in complex dynamics via iterated monodromy
groups, in graph theory via Schreier graphs of automaton groups, in dynamical systems
via limit dynamical systems of automaton groups, in game theory via algebraic models of
games (see [1, 8, 12] and the reference therein).

There is an ongoing project to understand which groups can be realized by finite au-
tomata. We mention only a few results in this direction relative to the current paper. In
[9] Grigorchuk and Żuk showed that the lamplighter group Z2 ≀ Z can be generated by a
2-state automaton over a 2-letter alphabet, which further lead to a negative answer to the
strong Atiyah conjecture concerning L2-Betti numbers [6]. Silva and Steinberg [14] realized
the lamplighter groups Zn ≀Z by the so-called reset automata, these automata were further
generalized in [3]. Some solvable automaton groups were realized by Bartholdi and Šuniḱ
in [2].

There are two standard operations that can be performed on automata: taking dual
automaton by interchanging the alphabet with the set of states, and taking inverse automa-
ton by switching input and output letters (in general, the inverse of an automaton may be
not well-defined, i.e., it may be not a (deterministic) automaton). By applying these two
operations to any automaton one can produce up to eight automata. If all these automata
are well-defined, the original automaton is called bireversible. The study of bireversible
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Figure 1: The automaton A generating the lamplighter group Z3 ≀ Z

automata was initiated by Macedońska, Nekrashevych and Sushchansky [10] in connection
with the commensurator of a regular (unrooted) tree. New geometric ideas came to the
area with the paper [4] of Glasner and Mozes, who associated a square complex to each
finite automaton and noticed that an automaton is bireversible if and only if the univer-
sal covering of the associated square complex is a topological product of two trees. This
approach led to the first automaton realizations of free groups.

It is surprisingly difficult to describe a group generated by a bireversible automaton.
For example, there are only two bireversible automata with 3 states over an alphabet with
2 letters generating infinite groups — Aleshin and Bellaterra automata. The Bellaterra
automaton generates the free product of three copies of C2 [12, Theorem 1.10.2]. As con-
cerning Aleshin automaton, it was an open question for a long time whether this automaton
generates the free group of rank three, until this was confirmed by Vorobets and Vorobets
[16]. Two families of bireversible automata generalizing Aleshin and Bellaterra automata
were studied in [17, 15, 13]: the automata in these families generate a free group of finite
rank or the free product of copies of C2. Up to now all investigated bireversible automata
generate finitely presented groups, while all the automata generating (Zn)

k ≀Z, k ≥ 1, from
[2, 3, 9, 14] are not bireversible as well as all known automata generating infinite torsion
groups and groups of intermediate growth.

In this paper we consider the automaton A with 3 states over an alphabet with 3
letters shown in Figure 1. This automaton is bireversible and its dual automaton ∂(A) is
equivalent to A: the correspondence a 7→ 1, b 7→ 3, c 7→ 2 converts A to ∂(A). Therefore all
eight automata obtained from A by taking dual and inverse automata generate isomorphic
groups. Our goal is to prove the following main theorem.

Theorem 1. The group GA generated by the automaton A is isomorphic to the lamplighter

2



group Z3 ≀ Z.

In particular, we get an example of a bireversible automaton generating infinitely pre-
sented group. While finishing this article, we were informed by D. Savchuk and S. Sidki
that they proved that a certain bireversible automaton with 4 states over an alphabet with
2 letters generates the infinitely presented group ((Z2 × Z2) ≀ Z)⋊ Z2.

2 Preliminaries

Let X be a finite alphabet and X∗ the free monoid freely generated by X . The elements of
X∗ are finite words v = x1x2 . . . xn, xi ∈ X , n ∈ N, together with the empty word denoted
∅. The operation is concatenation of words. The length of a word v = x1x2 . . . xn is |v| = n.
We will also consider the space XN = {x1x2 . . . : xi ∈ X} of all right infinite sequences
over X with the product topology of discrete sets X .

An automaton A over the alphabet X is a finite directed labeled graph, whose vertices
are called the states of the automaton, and where each edge is labeled by a pair x|y for
some letters x, y ∈ X in such a way that for each vertex s ∈ A and every letter x ∈ X

there exists exactly one arrow outgoing from s and labeled by x|y for some y ∈ X . Such
automata are precisely finite complete deterministic Mealy automata with the same input
and output alphabets.

The dual automaton ∂(A) is obtained by interchanging the alphabet with the set of
states: the states of ∂(A) are the elements of X and the arrows are given by the rule

x
s|t
−→ y in ∂(A) if s

x|y
−→ t in A.

The dual automaton ∂(A) is always well-defined. The inverse automaton i(A) is obtained
by switching labels of arrows: the states of i(A) are formal symbols s−1 for s ∈ A and the
arrows are given by

s−1 y|x
−→ t−1 in i(A) if s

x|y
−→ t in A.

The i(A) is not always an automaton: there may be several arrows with the same left label
outgoing from the same vertex. If i(A) is an automaton then A is called invertible. An
automaton A is called bireversible if all eight automata are well-defined:

A, ∂(A), i(A), i(∂(A)), ∂(i(A)), ∂(i(∂(A))), i(∂(i(A))), i(∂(i(∂(A)))) = ∂(i(∂(i(A)))).

It is easy to see that A is bireversible if A, ∂(A) and ∂(i(A)) are invertible.
Let us describe how to generate groups by automata. Every state s of an automaton

A defines the transformation s : X∗ → X∗ as follows. Given a word v = x1x2 . . . xn ∈ X∗,
there exists a unique directed path in the automaton A starting at the state s and labeled
by x1|y1, x2|y2,. . . ,xn|yn for some yi ∈ X . Then the word y1y2 . . . yn is called the image of
x1x2 . . . xn under s, and the vertex at the end of this path is called the section of s at v

denoted s|v. The action of an automaton A on the space X∗ naturally extends to the action
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on the space XN. All the transformations given by the states of A are invertible if and only
if A is invertible; in this case these transformations generate a group under composition of
functions called the automaton group GA generated by the automaton A (we will be using
left actions).

A convenient way to work with transformations given by the states of an automaton are
wreath recursions. Every invertible automaton with states {s1, . . . , sm} over the alphabet
X = {1, 2, . . . , d} can be uniquely given by the following system called wreath recursion:

s1 = (s11, s12, . . . , s1d)π1,

s2 = (s21, s22, . . . , s2d)π2, (1)

...

sm = (sm1, sm2, . . . , smd)πm,

where sij = si|j ∈ {s1, . . . , sm} is the section of si at j, and πi ∈ Sym(X) is the permutation
induced by the action of si on X . The tuples (sij) describe the arrows in automaton while
permutations πi describe the labels of arrows: we have an arrow from the vertex si to vertex
sij labeled by j|πi(j). The system (1) defines the action of each state si on words over X
by the recursive rule:

si(xv) = πi(x)six(v) for x ∈ X, v ∈ X∗ ∪XN and i = 1, . . . , m.

Similarly, one can use wreath recursions to work with elements of automaton groups.
Define the section of a product (or word) s1s2 . . . sn, si ∈ A±1 at v ∈ X∗ by the rule

(s1s2 . . . sn)|v = s′1s
′
2 . . . s

′
n, where s′i = si|(s1...si−1)(v).

Then every element g ∈ GA over the alphabet X = {1, 2, . . . , d} can be decomposed as

g = (g|1, g|2, . . . , g|d)πg, (2)

where πg ∈ Sym(X) is the permutation induced by the action of g on X , and g|i are the
sections of g at elements of X . The inverse and multiplication of elements written in this
form can be performed by the rules

g−1 = (g|π−1
g (1), g|π−1

g (2), . . . , g|π−1
g (d))π

−1
g ,

g · h = (g|1h|πg(1), g|2h|πg(2), . . . , g|dh|πg(d))πgπh.

There is a direct connection between sections of words over states of A and the action
of the dual automaton ∂(A). Elements of the group generated by ∂(A) act on words over
the states of A. If v is a word over alphabet (an element of G∂(A)) and w is a word over
states, then the image v(w) is equal to the section w|v.

The terminology of wreath recursions comes from the wreath decomposition of auto-
morphism groups of regular rooted trees. The set X∗ can be identified with the vertex set
of a rooted tree with empty word as the root and with edges (v, vx) for x ∈ X , v ∈ X∗.

4



For this reason words over X are usually called vertices. The set Xn of words of lengths n
is called the n-th level of the tree X∗. The set XN can be identified with the boundary of
X∗. The transformations defined by invertible automata over X act by automorphisms on
the tree X∗ and by homeomorphisms on the space XN. The automorphism group Aut(X∗)
can be decomposed as the permutational wreath product Aut(X∗) ∼= Aut(X∗) ≀ Sym(X),
that explains why we have the decomposition (2). The permutation πg from (2) is called
the root permutation of g. Note that any element g can be uniquely given by the collection
(πg|v)v∈X∗ of root permutations of all sections of g.

3 Proof of Theorem 1

Let A be the automaton shown in Figure 1 with the set of states S = {a, b, c} over the
alphabet X = {1, 2, 3}, and let GA be the group generated by A. The automaton A and
its dual ∂(A) can be given by the following wreath recursions:

a = (a, b, c)(2, 3), 1 = (1, 3, 2)(b, c),

b = (c, a, b)(1, 3), 2 = (3, 2, 1)(a, b),

c = (b, c, a)(1, 2), 3 = (2, 1, 3)(a, c).

So that

a−1 = (a−1, c−1, b−1)(2, 3), 1−1 = (1−1, 2−1, 3−1)(b, c),

b−1 = (b−1, a−1, c−1)(1, 3), 2−1 = (2−1, 3−1, 1−1)(a, b),

c−1 = (c−1, b−1, a−1)(1, 2), 3−1 = (3−1, 1−1, 2−1)(a, c).

The wreath recursions for ab−1, bc−1, ca−1:

ab−1 = (ab−1, bc−1, ca−1)(1, 3, 2),

bc−1 = (ca−1, ab−1, bc−1)(1, 3, 2),

ca−1 = (bc−1, ca−1, ab−1)(1, 3, 2),

imply the relations ab−1 = bc−1 = ca−1. We denote α = ab−1. Then α has order 3 and
satisfies the wreath recursion

α = (α, α, α)(1, 3, 2).

Analogously one gets relations

α−1 = ac−1 = ba−1 = cb−1, a−1b = b−1c = c−1a, a−1c = b−1a = c−1b.

Now it is clear that the group GA is generated by a and α. Our goal is to prove that GA

has the following presentation:

GA = 〈a, α|α3, [a−nαan, a−mαam], n,m ∈ Z〉 ∼= Z3 ≀ Z. (3)
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Let us define the subgroup W of Aut(X∗) consisting of elements g such that the root
permutations of all sections of g belong to Alt3 = {ε, (1, 2, 3), (1, 3, 2)} and for each n ∈ N

the root permutations of g|v at all vertices v of n-th level are equal. In other words, each
element g of W can be given by a sequence (π1, π2, . . .), πi ∈ Alt3, where πi is the root
permutation of g|v for all vertices v ∈ X i−1; such element acts on X∗ as follows:

g(x1x2 . . . xn) = π1(x1)π2(x2) . . . πn(xn)

for any xi ∈ X and n ∈ N. It is easy to see that the group W is abelian of exponent 3.
Notice that the elements α, α−1, a−1b, a−1c belong to W and that every g ∈ W can be
decomposed as g = (h, h, h)π for some h ∈ W and π ∈ Alt3.

Lemma 1. For any g ∈ W and x, y ∈ {a, b, c} the elements x−1gy and xgy−1 belong to

W .

Proof. For every g ∈ W , we split the elements x−1gy on three types:

T1(g) = {a−1ga, b−1gb, c−1gc},

T2(g) = {a−1gb, b−1gc, c−1ga},

T3(g) = {a−1gc, b−1ga, c−1gb}.

We will prove that for each n ∈ N the set of sections of x−1gy at vertices of n-th level is
equal to the set Ti(gn) for some i ∈ {1, 2, 3} depending on n, where gn is the section of g
at some vertex of n-th level (they are all equal), i.e.,

{(x−1gy)|v : v ∈ Xn} = Ti(gn).

For n = 1, let us write g = (h, h, h)π, h ∈ W and note that {(x−1gy)|v : v ∈ X} is equal to
Ti(h) for some i ∈ {1, 2, 3}. Assume inductively that the claim holds for level n. By direct
computations shown in Table 1 we see that for every i ∈ {1, 2, 3}

{f |v : f ∈ Ti(g) and v ∈ X} = Tj(h)

for some j ∈ {1, 2, 3} depending only on i and π. Therefore

{(x−1gy)|v : v ∈ Xn+1} = {f |v : f ∈ Ti(gn) and v ∈ X} = Tj(gn+1),

and the claim is proved.
Notice that for each i ∈ {1, 2, 3} and any g ∈ W all elements of Ti(g) have the same

root permutations which belong to Alt3. Hence for each n ∈ N the root permutations
of (x−1gy)|v at the vertices v of n-th level are all equal. Therefore x−1gy ∈ W for any
x, y ∈ {a, b, c}.

Analogously one can show that xgy−1 ∈ W for any x, y ∈ {a, b, c}.
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Remark 1. It follows from the lemma that actually all elements in each Ti(g) are equal,
because they have the same set of permutation on each level:

a−1ga = b−1gb = c−1gc, a−1gb = b−1gc = c−1ga, a−1gc = b−1ga = c−1gb.

Therefore T1, T2, T3 can be considered as transformations of W . Since every element in W

can be uniquely represented by a sequence of permutations (π1, π2, . . .), πi ∈ Alt3, i.e., an
element from AltN3 , the T1, T2, T3 can be viewed as transformations of AltN3 . Table 1 shows
that these transformations satisfy the wreath recursion

T1 = (T1, T2, T3)(τ2, τ3)

T2 = (T3, T1, T2)(τ1, τ3),

T3 = (T2, T3, T1)(τ1, τ3)

where τ1 = ε, τ2 = (1, 2, 3), τ3 = (1, 3, 2). Interestingly, this recursion repeats the wreath
recursion for the automaton A if we identify τi with i.

We can apply this observation to elements of GA of the form u−1v for u, v ∈ {a, b, c}n.
In this case u−1v corresponds to a word w in the alphabet {T1, T2, T3} of length n, because
we can write u−1v as the progressive composition of some conjugations of the form x−1y.
For example:

a−1b−1b−1c−1abaa = T2T1T3T1(e).

The trivial element e ∈ W is represented by the sequence τ∞1 = τ1τ1 . . .. Therefore the
sequence of permutations representing u−1v is equal to the image w(τ∞1 ).

For a word w over {a±1, b±1, c±1} we denote by ord(w) the sum of exponents of letters
in w. For example, ord(a−1b3cb−2) = −1 + 3 + 1− 2 = 1.

Lemma 2. If an element g ∈ GA can be represented by a word over {a±1, b±1, c±1} with

ord(w) = 0, then g ∈ W . In particular, g3 = e and such elements commute with each

other.

Proof. We prove the lemma by induction on the length of g. The statement holds for
elements x−1y and xy−1 for all x, y ∈ {a, b, c}. If we assume that the statement holds for
elements g of length ≤ 2n, then it holds for elements x−1gy and xgy−1 by Lemma 1. So let
us prove the statement for words starting and ending with either both letters in X or both
letters in X−1. These words are either of type xvy with ord(v) = −2 or of type x−1vy−1

with ord(v) = 2. It is easy to show by induction, that if |w| = 2(n + 1), w = xvy with
ord(v) = −2 (resp. w = x−1vy−1 with ord(v) = 2) then w is a concatenation of words of
the form xuy−1 and x−1uy (resp. x−1uy and xuy−1) for some u with ord(u) = 0 and length
≤ 2n. The statement follows.

Notice that all elements a−nαan from presentation (3) satisfy the condition of Lemma 2.

Corollary 1.1. The relations [a−nαan, a−mαam] = e hold in the group GA.
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g = (h, h, h)π

π = ε

a−1ga = (a−1ha, c−1hc, b−1hb)
Type I : b−1gb = (b−1hb, a−1ha, c−1hc)

c−1gc = (c−1hc, b−1hb, a−1ha)

a−1gb = (a−1hc, c−1hb, b−1ha)(1, 3, 2)
Type II : b−1gc = (b−1ha, a−1hc, c−1hb)(1, 3, 2)

c−1ga = (c−1hb, b−1ha, a−1hc)(1, 3, 2)

a−1gc = (a−1hb, c−1ha, b−1hc)(1, 2, 3)
Type III : b−1ga = (b−1hc, a−1hb, c−1ha)(1, 2, 3)

c−1gb = (c−1ha, b−1hc, a−1hb)(1, 2, 3)

π = (1, 2, 3)

a−1ga = (a−1hb, c−1ha, b−1hc)(1, 3, 2)
Type I : b−1gb = (b−1hc, a−1hb, c−1ha)(1, 3, 2)

c−1gc = (c−1ha, b−1hc, a−1hb)(1, 3, 2)

a−1gb = (a−1ha, c−1hc, b−1hb)(1, 2, 3)
Type II : b−1gc = (b−1hb, a−1ha, c−1hc)(1, 2, 3)

c−1ga = (c−1hc, b−1hb, a−1ha)(1, 2, 3)

a−1gc = (a−1hc, c−1hb, b−1ha)
Type III : b−1ga = (b−1ha, a−1hc, c−1hb)

c−1gb = (c−1hb, b−1ha, a−1hc)

π = (1, 3, 2)

a−1ga = (a−1hc, c−1hb, b−1ha)(1, 2, 3)
Type I : b−1gb = (b−1ha, a−1hc, c−1hb)(1, 2, 3)

c−1gc = (c−1hb, b−1ha, a−1hc)(1, 2, 3)

a−1gb = (a−1hb, c−1ha, b−1hc)
Type II : b−1gc = (b−1hc, a−1hb, c−1ha)

c−1ga = (c−1ha, b−1hc, a−1hb)

a−1gc = (a−1ha, c−1hc, b−1hb)(1, 3, 2)
Type III : b−1ga = (b−1hb, a−1ha, c−1hc)(1, 3, 2)

c−1gb = (c−1hc, b−1hb, a−1ha)(1, 3, 2)

Table 1: Decomposition of x−1gy for x, y ∈ {a, b, c} and g ∈ W

Lemma 3. The group GA acts transitively on Xn for every n ∈ N.

Proof. We will prove that the stabilizer StGA
(1n) of the vertex 1n acts transitively on 1nX

for each n ∈ N. The statement immediately follows from this claim. Indeed, let u, v ∈ Xn
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and we want to find an element g ∈ GA such that g(u) = v. We proceed by induction
on the length |u| = |v| = n. If n = 1 the claim follows from the transitivity of GA

on X . Let |u| = |v| = n + 1 > 1 with u = u′x and v = v′y, where u′, v′ ∈ Xn and
x, y ∈ X . By induction there exist h, k ∈ GA such that h(u′) = k(v′) = 1n. Let x′ = h|u′(x)
and y′ = k|v′(y). Since StGA

(1n) is transitive on 1nX , there is s ∈ StGA
(1n) such that

s(1nx′) = 1ny′. Then if we put g = hsk−1, we have g(u) = v.
Let us prove the claim. Notice that a3, b3, c3 preserve the vertex set X11 = {x1 =

111, y1 = 211, z1 = 311}, and the action restricted to {x1, y1, z1} can be described by the
wreath recursion

a3 = (a3, b3, c3)(y1, z1),

b3 = (c3, a3, b3)(x1, z1),

c3 = (b3, c3, a3)(x1, y1).

which repeat the wreath recursion for the automatonA. It immediately follows by induction
that if we denote

xk = 13
k

, yk = 213
k−1+2, zk = 313

k−1+2 and ak = a3
k

, bk = b3
k

, ck = c3
k

,

then ak, bk, ck preserve the vertex set {xk, yk, zk} with the recursion

ak = (ak, bk, ck)(yk, zk),

bk = (ck, ak, bk)(xk, zk),

ck = (bk, ck, ak)(xk, yk).

It follows that
b2k(xk) = xk and b2k|xk

= ckbk = c3
k

b3
k

.

The element c3
k

b3
k

acts as permutation (1, 2, 3) on X . Therefore b2k stabilizes xk and acts
transitively on the set xkX . This means that the stabilizer of 1n acts transitively on 1nX for
each n = 3k, k ∈ N. By taking sections at vertices 1i we get that StGA

(13
k−i) is transitive

on 13
k−iX which implies our claim for each n ∈ N.

Corollary 1.2. Any word of length n over {a, b, c} is a section of any other word of length

n over {a, b, c}.

Proof. Since the automaton A is equivalent to its dual automaton ∂(A), the group gen-
erated by ∂(A) acts transitively on {a, b, c}n for each n ∈ N. Therefore the semigroup
generated by X acts transitively on {a, b, c}n. This means that for any w,w′ ∈ {a, b, c}n

there exists v ∈ X∗ such that w|v = w′.

Corollary 1.3. The semigroup generated by a, b, c is free.

Proof. Every non-empty word w over {a, b, c} is a non-trivial element, because w has a
non-trivial section anb, n = |w| − 1.

9



Assume by contradiction that w =GA
v for a word v over {a, b, c} different from w.

If |v| > |w| then v−1
1 w =G v2, where v = v1v2 with |v1| = |w| and non-empty v2. Since

ord(v−1
1 w) = 0 we get v32 = e by Lemma 2 contradicting our first statement.

We may assume that |v| = |w|, and let us take a shortest such relation v =GA
w. By

Corollary 1.2 there is s ∈ X∗ such that v|s = an. Let u := w|s. Since A is bireversible,
an 6= u. Furthermore an =GA

u is a relation where the first letter of u is b or c, because of
minimality. Taking the section at 11 of this relation, we get an = an|11 =GA

u|11 =GA
u.

The first letters of u and u|11 are equal since b|11 = b and c|11 = c. After canceling these
letters we get a shorter relation. Therefore u and u|11 are equal as words. However, this is
impossible already for the first two letters of w as the following computations show:

ba|11 = bc, bb|11 = ba, bc|11 = bb,

ca|11 = cb, cb|11 = cc, cc|11 = ba.

We are ready to prove Theorem 1.

Proof of Theorem 1. Let N be the subgroup of GA generated by elements a−nαan, n ∈ Z.
Then N is a normal abelian subgroup of exponent 3 by Lemma 2. Let us show that
N =

⊕
Z
〈a−nαan〉 ∼=

⊕
Z
Z3. Suppose there is a relation

(a−n1αε1an1)(a−n2αε2an2) . . . (a−nkαεkank) = e,

where εi ∈ {±1} and n1 < n2 < . . . < nk. Substituting α = ab−1 and α−1 = ac−1

in the previous expression, and making free cancelations we get a relation of the form
a−n1+1w−1ank = e, where w is a word over {a, b, c} with at least one occurrence of b or c.
We get a contradiction with Corollary 1.3, which proves our claim.

By Corollary 1.3 the element a has infinite order and N ∩ 〈a〉 = {e}. Since GA = N〈a〉
and a acts on N by conjugation via the shift, we get the statement of the theorem.

Remark 2. In the automaton realizations of Zm ≀Z from [9, 14] elements of the subgroup⊕
Z
Zm are finitary transformations. An element g is called finitary whenever there exists

n ∈ N such that g(uv) = g(u)v for all u ∈ Xn and v ∈ X∗, or equivalently, the sections of
g at all vertices of n-th level are trivial. In our case, non-trivial elements of the subgroup
N =

⊕
Z
Z3 are not finitary.

The stabilizers StG(w) of points w ∈ XN are known as parabolic subgroups of G.
For every bireversible automaton, almost every point of XN with respect to the uniform
measure on XN has trivial stabilizer (see [15]). For our group GA there are points with a
non-trivial stabilizer, for example a ∈ StGA

(11 . . .). Moreover, using the results obtained
in [5] it is not difficult to prove that the stabilizer StGA

(w) is non-trivial exactly when
the sequence w is eventually periodic. We omit the proof because it uses quite different
technique. Instead we just prove the analog of Proposition 4.6 from [14].

Proposition 2. The stabilizer StGA
(w) of every point w ∈ XN is a cyclic group.

10



Proof. Note that a non-trivial element g ∈ W ⊃ N has no fixed points in XN, since g

corresponds to a non-trivial sequence of permutations (π1, π2, . . .) 6= (ε, ε, . . .), πi ∈ Alt3
and g(w) = g(x1x2 . . .) = π1(x1)π2(x2) . . ..

Let g = nak, where n ∈ N and k ∈ N, be an element of StGA
(w) with the smallest k.

We prove that g is a generator of StGA
(w). Take any h ∈ StGA

(w), h = n′am, where n′ ∈ N

and m ∈ Z. Then m is a multiple of k; so let m = kl with l ∈ Z. We have gl = (nak)l = nakl

for an opportune n ∈ N . Then hg−l = n′n−1 ∈ N ∩ StGA
(w) = {e}. Hence h = gl.
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