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Transfer Matrix Representation

for Periodic Planar Media

A. Parrinello∗, G. L. Ghiringhelli

Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano
Via La Masa 34, 20156 Milano, Italy

Abstract

Sound transmission through infinite planar media characterized by in-plane

periodicity is faced by exploiting the free wave propagation on the related unit

cells. An appropriate through-thickness transfer matrix, relating a proper set

of variables describing the acoustic field at the two external surfaces of the

medium, is derived by manipulating the dynamic stiffness matrix related to

a finite element model of the unit cell. The adoption of finite element models

avoids analytical modeling or the simplification on geometry or materials.

The obtained matrix is then used in a transfer matrix method context, mak-

ing it possible to combine the periodic medium with layers of different nature

and to treat both hard-wall and semi-infinite fluid termination conditions. A

finite sequence of identical sub-layers through the thickness of the medium

can be handled within the transfer matrix method, significantly decreasing

the computational burden. Transfer matrices obtained by means of the pro-

posed method are compared with analytical or equivalent models, in terms
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of sound transmission through barriers of different nature.

Keywords: FEM, Periodic Media, Transfer Matrix, Sound Transmission

1. Introduction

The design of sound barriers is of utmost importance in many applica-

tions including automotive, aerospace and buildings. Multi-layer panels are

commonly used as wall partitions, airplane flooring and cabin structures and

sound transmission through these components has great relevance. Sound

transmission through panels can be evaluated experimentally [1], numeri-

cally or analytically. Since an alternative numerical approach is proposed

here, a brief overview of the most common numerical methods is presented

in the following.

Models based on well-known numerical methods, such as the Finite Ele-

ment Method (FEM) [2, 3, 4, 5] and the Boundary Element Method (BEM)

[6], can provide an accurate computation of sound transmission. However,

they require extensive computing resources and are inappropriate for large

structures and high frequency calculation, when the vibration wavelength

becomes much smaller than the structural dimensions.

Statistical Energy Analysis (SEA) [7, 8] has also proven to be a useful

tool in the task of predicting sound transmission through partitions. SEA is

appropriate for high frequency calculation but is known to fail at low frequen-

cies where the number of modal resonance frequencies in the analysis band is

low. The SEA methodology can be exploited either with a modal approach,

i.e. by modeling each subsystem as a superposition of the resonant responses,

or with a wave approach, i.e. by modeling each subsystem as a superposition
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of waves traveling through the structure. The latter way consists in deriving

and solving a dispersion set of equations between wavenumbers and frequen-

cies for the subsystem of interest. Modal density, group and phase velocities,

radiation efficiency and loss-factor are calculated using dispersion relations

solutions. These quantities can be evaluated over many kinds of structures,

e.g. for waveguides [9], curved laminates and composite sandwich panels [10].

The combination of a wave approach with the finite element (FE) model of

a unit cell leads to the dispersion problem of the related periodic structure

[11, 12]. Vibroacoustic responses of various periodic structures are presented

in [13] and [14]. The mathematics of wave propagation in periodic systems

has been discussed by Brillouin [15] in the field of electrical engineering. Cre-

mer and Leilich [16] and Heckl [17] investigate on periodic structures formed

by assemblages of beams and plates. The effect of damping, the nature of

propagation waves and their possible interaction with acoustic waves have

been discussed by Mead [18, 19]. In all the papers referred to, exact, har-

monic solutions have been found for the equations of motion of the periodic

system. Mead [20] and Abrahamson [21] have involved the Rayleigh-Ritz

technique in order to treat non-uniform periodic structures. Afterwards, Or-

ris and Petyt [22, 23] have employed the FE technique for wave propagation

analysis.

An alternative approach is the Transfer Matrix Method [24] (TMM). Ma-

trix representation of sound propagation is an efficient and largely used tool

for modeling plane acoustic fields in stratified media. The problem is formu-

lated in the frequency domain. The layers are assumed to be laterally infinite,

and can be of different natures. Nonetheless, at low frequencies, where the
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effects of size are important, it is essential to include appropriate corrections,

accounting for the finite radiating area. An approach, to the specific problem

of airborne transmission losses, is based on application of the spatial window-

ing technique [10, 25, 26]. Analytical expressions for the transfer matrices

are only available for elastic solids, thin plates, fluids and poro-elastic media.

On the basis of the three-dimensional (3D) elasticity theory, Huang and Nutt

[27] derive the transfer matrix of a general anisotropic layer. Description of

non-homogeneous structures is difficult, e.g. honeycomb panels, ribbed pan-

els, stud based double-leaf walls, panels with PZT patches and viscoelastic

inclusions or functionally graded components in general. An equivalent ho-

mogeneous representation can be derived for some heterogeneous structures,

such as for honeycomb panels. For other structures, homogenization may

be ineffective. Moreover, significant contributions to the dynamic behavior

could be lost in homogenization, especially local high-frequency dynamics.

The present work aims to extend the use of the TMM to more general

barriers, e.g. the ones above mentioned, by exploiting the features of FE

modeling. A procedure is derived to obtain the transfer matrix, related to a

specific incident plane wave, for an infinite planar medium characterized by

in-plane periodicity. First, a proper 3D unit cell of the periodic medium is

modeled by means of FEs and the related dynamic stiffness matrix (DSM) is

obtained. Then, this latter is manipulated by applying proper conditions to

the periodic boundaries, according to the trace of the incident plane wave.

Finally, a further condensation of the DSM, with respect the trace of the

incident plane wave, leads to the desired one-dimensional through-thickness

model and the related transfer matrix.
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The proposed procedure combines the versatility of a FE model and the

efficiency of the TMM. The combination of a FE model of the cell with a

wave approach accurately describes the dynamics involved in acoustic trans-

mission, and the transfer matrix obtained makes it possible to exploit the

ability of the TMM by efficiently combining layers of different natures, lead-

ing to simple and effective computation of all the required acoustic indicators.

Moreover, matrix representation prevents the troubles associated with deal-

ing with dispersion curves and SEA models, thereby avoiding the need for

analyst intervention. Thus, the proposed procedure for evaluating the acous-

tic properties of a barrier can be termed direct, since it implicitly involves

the wave dispersion in the medium through the DSM of the related unit cell.

In contrast, a procedure which requires the dispersion solution for the wave

characterization of the medium could be termed indirect. Possible applica-

tions of the proposed procedure on heterogeneous media include functionally

graded plates [28], 3D braided composite [29], 3D woven composites [30, 31]

and stud based double-leaf walls [4, 5].

Section 2 presents an overview of the TMM for the phenomenon of acous-

tic transmission through flat and infinitely extended media. The transfer

matrix of a periodic medium will then be derived in section 3, and a number

applications will demonstrate the effectiveness of the proposed procedure in

section 4.

2. Transfer Matrix Method

Let us consider a flat, infinitely extended, possibly layered, medium sep-

arating two semi-infinite media. The right-hand side of Fig. 1 shows a plane
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wave impinging upon the bottom surface of the flat structure at an incidence

angle of θI with an orientation with respect to the x direction defined by the

heading angle α (left hand side of Fig. 1). Both a reflected wave and a trans-

mitted wave will therefore propagate from the interposed medium. Continu-

ity of the velocity at the bottom interface shows that the angles of incidence

and reflection are equal: θI = θR = θ. The angle of transmission, θT , depends

on the propagation through the thickness. For real wavenumbers and thin

barriers, Snell’s law of refraction states that: sin(θI)/c1 = sin(θT )/c2, where

c1 and c2 are the phase velocities in the two semi-infinite media. The ampli-

tudes of the reflected and transmitted waves will depend on the inertial and

mechanical properties of the barrier. According to their properties, various

types of waves can propagate in each layer of the interposed material. Sound

transmission through the medium is fully characterized by these waves. The

x− y components of the wavenumber of each wave propagating in each layer

are equal to the x − y components of the incident wave in the semi-infinite

medium, i.e.:

kx =
ω

c1

sin(θ) cos(α) , ky =
ω

c1

sin(θ) sin(α) . (1)

In other words, the incident plane wave produces only plane acoustic fields

in the stratified medium, characterized by the same x− y wavenumber com-

ponents. The acoustic field in a layer is completely defined by the nature of

the waves propagating in it and by their amplitudes [24].

2.1. Matrix representation

In a TMM context, each layer is replaced by a matrix linking the values

of a proper set of variables at the opposite interfaces. First, the relationship
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Figure 1: Plane wave reflection and transmission at a plane interface between two semi-

infinite media

between a set of variables which describe the acoustic field at a specific

height, V(zj), and the wave amplitudes vector, Aj, must be defined for the

j-th layer through a square matrix: V(zj) = Γ(zj)Aj. Finally, the variables

at the bottom interface of the layer, VBj, can be related to the variables at

the top interface, VTj:

VBj = Γ(zBj)Γ(zTj)
−1VTj = Tj(ω, θ, α)VTj . (2)

The transfer matrix thus obtained for a specific incident plane wave, Tj(ω, θ, α),

depends on the thickness and physical properties of the layer. Analytical ex-

pressions for the transfer matrices of different kind of layers are available in

[24].

2.2. Assembling the global transfer matrix

The transfer matrix of a layered medium is obtained from the transfer

matrices of individual layers by imposing continuity conditions at interfaces
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as

H0 =


If1 Jf1T1 0 · · · 0 0

0 I12 J12T2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · J(n−2)(n−1)Tn−1 0

0 0 0 · · · I(n−1)(n) J(n−1)(n)Tn

 , (3)

where Iij and Jij are interface matrices which depend on the nature of the

i-th and j-th layers and the suffix f denotes the fluid at the excitation side.

Details on the interface matrices are fully available in [24]. For a layered

medium with n layers of the same nature interface matrices Iij and Jij are

identity matrices and the global transfer matrix becomes

H0 =
[
If1 Jf1T

]
, (4)

where

T = T1 ·T2 · ... ·Tn . (5)

At the termination side, impedance conditions relating the field variables

are needed to well pose the problem. Such conditions closely depend on

the nature of the termination: hard wall or semi-infinite fluid. The added

equations and variables leads to the matrix H [24].

2.3. Calculation of the acoustic indicators

For both termination conditions, the impedance condition of the fluid at

the excitation side is still needed. Adding this equation to matrix H allows

for the calculation of the acoustic indicators of the problem. The surface

impedance of the medium is calculated by

Zs = −detH1

detH2

, (6)
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where detHi is the determinant of the matrix obtained when the i-th column

has been removed from H. The reflection coefficient, R, and the absorption

coefficient, A, are then given by the classical formulas:

R =
Zs cos θ − Z0

Zs cos θ + Z0

and A = 1− |R|2 , (7)

where Z0 is the characteristic impedance of the semi-infinite medium. In case

of a diffuse field excitation, the absorption coefficient is defined as follows:

Ad(ω) =

∫ 2π

0

∫ θmax

0
A(ω, θ, α) cos θ sin θdθdα

2π
∫ θmax

0
cos θ sin θdθ

. (8)

In case of semi-infinite fluid termination, the transmission coefficient, T , and

the reflection coefficient, R, are related by

p1

1 +R
=
p2

T
, (9)

where pi is the pressure in the i-th semi-infinite fluid, so obtaining

T = −(1 +R)
detHN+1

detH1

. (10)

In case of a diffuse field excitation, the transmission loss is defined as:

TL(ω) = −10 log

∫ 2π

0

∫ θmax

0
|T (ω, θ, α)|2 cos θ sin θdθdα

2π
∫ θmax

0
cos θ sin θdθ

(11)

3. Transfer Matrix for Periodic Media

The analytical expression of a transfer matrix can be derived when an an-

alytical wave characterization of the infinitely extended medium is available,

as for homogeneous solids, fluids and mixed layers, e.g. porous media [24].

On the other hand, deriving the transfer matrix of a heterogeneous medium
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Figure 2: Schematic diagram of the procedure which leads to the transfer matrix, T, of a

periodic medium (gray box) bounded by two semi-infinite media (white boxes)

can be difficult or computationally expensive. Thus, a numerical procedure

for deriving the transfer matrix of a generic medium with in-plane periodic-

ity starting from the FE model of its unit cell is proposed here. The main

steps in the procedure are illustrated in Fig. 2 and discussed below. It should

be noted that also a homogeneous medium may be seen as a periodic one

with respect to a unit cell with proper shape but arbitrary dimensions. The

partitioning of the whole layer in a finite number of identical sub-layers, n,

can be handled directly within the TMM according to Eq. (5). The transfer

matrix for the 2D periodic sub-layer, T0, can be obtained with the present

procedure and finally the transfer matrix of the layered medium, T, can be

derived as

T = T0 ·T0 · ... ·T0︸ ︷︷ ︸
n times

= Tn
0 . (12)

3.1. Two-dimensional periodicity conditions

A 2D periodic structure is composed of identical elementary components,

or cells, connected to one another to cover a plane. Wave characterization

of the periodic medium is the first step in deriving its transfer matrix. Wave

motion through the periodic system is analyzed using Bloch’s theorem [15],

which states that the proportionate change in wave amplitude occurring from
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Figure 3: Unit cell of a generic structure periodic in the x− y plane

cell to cell depends on the propagation vector and does not depend on the

cell’s location within the periodic system. Propagation components are com-

plex numbers whose real and imaginary parts are denoted, respectively, as

attenuation and phase constants. Waves are free to propagate if the propa-

gation constants are purely imaginary, while their amplitude is attenuated if

the real part of the propagation constants is non-zero. Since the domain is

unbounded in the x−y plane and the input acoustic field is spatially uniform,

only free wave propagation (real wavenumbers) will be considered here.

The Bloch’s theorem can be combined with an FE model of the structure

by adopting the periodic theory developed by Orris and Petyt [22]. Fig. 3

depicts the unit cell, of dimensions Lx and Ly, extracted from an infinitely

extended periodic structure. The skew angle, δ, increases the flexibility of

the procedure, making it possible to deal with unit cells with the lowest

dimensions, e.g. the minimal unit cell in a hexagonal honeycomb panel is a

right prism with parallelogram bases.

We consider a generic medium with a linear solid phase and a fluid phase.
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Figure 4: Planar structures (black) converted into barriers with flat interfaces adding fluid

phases (gray)

Such a choice allows to handle layers with mixed interfaces, e.g. perforated

panels or honeycomb cores, and layers with non-flat interfaces, e.g. panels

with added patches and corrugated or stiffened panels, that can be considered

planar only in a broad sense. Models are available in the TMM context for

the first class of structures, while the method seems to be not suitable for

the second one. This latter can be treated by adding fluid phases in order to

obtain flat interfaces suitable for plane wave excitation; see Fig. 4.

For time harmonic motion at frequency ω, the governing equation of the

extracted unit cell is [32]([
Ks BT

0 Kf

]
+ iω

[
Cs 0

0 Cf

]
− ω2

[
Ms 0

−ρfB Mf/c
2

]){
qs
p

}
=

{
bs
bf

}
(13)

where the subscripts s and f identify the quantities related to the solid phase

and the fluid phase respectively, K, C and M are stiffness, damping and mass

matrices respectively, B is the solid-fluid interface matrix, c is the speed of

sound in the fluid phase, ρf is the fluid density, qs and bs are the vectors of

generalized displacements and forces in the solid phase, the vector p collects

the nodal pressures in the fluid mesh and bf is the vector of generalized forces

acting on the fluid phase at external boundaries. The medium may have fluid,

solid or mixed interfaces. The desired transfer matrix must depend on the

physical properties of the layer only. In order to enforce such a condition,

a weak coupling between layers must be hypothesized; that is, a particular
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Figure 5: Unit cells corresponding to the same periodic medium cut at different vertical

planes

load acting on a layer interface can’t alter its dynamical properties. Such a

hypothesis is deeply linked to the small perturbations assumption of linear

acoustics. To exploit the weak coupling hypothesis, the dynamic problem

can be rewritten by splitting boundary forces as

D(ω)q = f + e , (14)

where D(ω) is the dynamic stiffness matrix (DSM), q is the vector of general-

ized displacements, including pressures, f is the vector of generalized internal

forces, i.e. due to adjacent unit cells, and e is the vector of generalized exter-

nal forces, i.e. due to bounding media. An internal boundary, i.e. related to

an adjacent unit cell, may coincide with a physical boundary for the medium,

as in the case of the unit cell depicted on the right side of Fig. 5, or it may

not, as in the unit cell depicted on the left side. In the latter case the subset

ff related to the fluid phase equates to a zero vector, since the equilibrium

condition between opposite internal boundaries is ensured by the pressure

continuity in the fluid. So, the unit cell depicted on the left side of Fig. 5

simplifies the FE model. Anyway, the subset ff grants versatility in the def-

inition of the unit cell. Moreover, the subset ef equates to a zero vector for

layers with solid interfaces.

It is anticipated here that the presence of forces vectors in the dynamic

equation, Eq. (14), is only formal. In fact, internal forces will be removed
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from the problem through reduction of periodicity, and external forces will

remain unknown, since we are interested in the transfer matrix. Only the

DSM, D(ω), will therefore be involved in the procedure. Extracting the unit

cell from the infinitely extended medium, modeling the cell using any FE

package and applying external forces represent the operations defining the

first step in the procedure illustrated in Fig. 2.

As we have anticipated, the dynamic system must be reduced by linking

displacements and forces at opposite boundaries in the x− y plane. In order

to apply the required conditions, we distinguish in the unit cell between

an internal region (I), the left (L), right (R), after (A) and forward (F )

surfaces and four edges (LF ,LA,RF ,RA); see Fig. 3. Accordingly, the vector

of degrees of freedom (DOFs), q, is partitioned as

q = [qI qE qA qR qRF qLA qRA]T with qE = [qF qL qLF ]T . (15)

The vector of internal forces, f, is partitioned in the same manner

f = [0 fE fA fR fRF fLA fRA]T with fE = [fF fL fLF ]T , (16)

where the partition for the internal region, fI , has been replaced with a zero

vector. The vector of external forces, e, is not involved in this partitioning.

In order to simplify the following exposure, we suppose that the nodes at

opposite boundaries are identically arranged. The procedure could be gen-

eralized using interpolation matrices linking generalized displacements and

forces at opposite boundaries. Applying Bloch’s theorem to the generalized

displacements at the boundaries, we obtain the following relations:

qA = qFλy , qR = qLλx , qRF = qLFλx , qLA = qLFλy , qRA = qLFλxλy ,

(17)
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with

λx = exp(−ikxLx) , λy = exp(−ikyLy cos(δ)) · exp(−ikxLx sin(δ)) , (18)

where kx and ky are defined by the compatibility relations with respect to

the acoustic input, Eq. (1). As a consequence, periodicity conditions depend

on the specific incident plane wave. It should be noted that the displacement

relations, Eq. (17), also apply to the pressures contained in the vectors. So,

by applying Bloch’s theorem to the generalized forces at the boundaries and

taking into account equilibrium conditions, we obtain the following relations:

fA = −fFλy , fR = −fLλx , fRF = −fLFλx , fLA = −fLFλy , fRA = −fLFλxλy .

(19)

Clearly, the assumption of weak coupling between layers prevents periodicity

from being affected by external forces, e. Using the periodicity relations,

Eqs. (17) and (19), we can express the generalized displacements vector, q,

and the generalized internal forces vector, f, as

q =

[
I

0 +Λ

]{
qI
qE

}
= Aq′ and f =

[
I

0 −Λ

]{
0
fE

}
= Âf′ (20)

with

Λ =


Iλy 0 0

0 Iλx 0

0 0 Iλx
0 0 Iλy
0 0 Iλxλy

 , (21)

where A, Â and Λ are complex matrices. The equation of motion, Eq. (14),

can be reduced as

AHD(ω)Aq′ = AH(f + e) . (22)
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Under the assumption of real wavenumbers (λHx = 1/λx, λ
H
y = 1/λy), we

obtain

AHf = AHÂf′ =

[
I 0
0 0

]{
0
fE

}
= 0 . (23)

As a consequence, the forces due to neighboring cells disappear from the

reduced dynamic problem and we obtain

D′(ω, θ, α)q′ = AHe = e′ . (24)

Applying periodicity conditions to obtain a reduced problem represents the

second step in the procedure illustrated in Fig. 2. It should be noted that

solving the homogeneous counterpart of the reduced dynamic problem, Eq. (24),

for the frequency ω as a function of the propagation constants λx and λy,

yields the frequencies of free wave propagation, i.e. the dispersion relations

for the periodic medium. Even if the dispersion problem is not solved, all

the dispersion information are implicitly involved in the method, since these

are contained in the reduced DSM, D′(ω, θ, α). In this sense, the proposed

procedure may be termed direct, since the solution of the dispersion problem

is bypassed.

3.2. Energetic equivalence to one-dimensional through-thickness problem

For a given incident wave, defined by its angular frequency, ω, incident

angle, θ, and heading angle, α, its wavenumber components, kx and ky, can

be computed with Eq. (1) and the reduced problem, Eq. (24), can be derived.

The next step in the proposed procedure involves reducing the obtained 3D

model to an energetically equivalent 1D model through thickness. In a TMM

context, we are interested in representing the energy flow through the com-

ponents. Since it occurs through the thickness of the layers, we have to
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partition the reduced vectors of DOFs, q′, and of external forces, e′, in the

top (T), bottom (B) and internal (I) sets. With a view to exploiting the

transfer matrix thus obtained in a TMM context, external rotational DOFs

and moments must be assigned to internal sets, since rotations at interfaces

are not involved in the classic TMM. Thus, rotations are assumed not to

be restrained at the interfaces. As a consequence, vectors q′B and q′T col-

lect displacements and, eventually, pressures regardless of the finite elements

used. Moreover, the set of internal forces, e′I , equates to a zero vector since

no internal forces or external moments are applied. The rearranged problem

appears as D′BB D′BI D′BT
D′IB D′II D′IT
D′TB D′TI D′TT



q′B
q′I
q′T

 =


e′B
0

e′T

 . (25)

The internal dofs set, q′I , may be eliminated, obtaining the following form[
D′BB −D′BID

′−1
II D′IB D′BT −D′BID

′−1
II D′IT

D′TB −D′TID
′−1
II D′IB D′TT −D′TID

′−1
II D′IT

]{
q′B
q′T

}
= C′

{
q′B
q′T

}
=

{
e′B
e′T

}
.

(26)

In order to simplify the following exposure, we suppose that the vectors are

partitioned as

q′B =


q′Bx
q′By
q′Bz
p′B

 , q′T =


q′Tx
q′Ty
q′Tz
p′T

 , e′B =


e′Bx
e′By
e′Bz
e′Bf

 , e′T =


e′Tx
e′Ty
e′Tz
e′Tf

 . (27)

To build the corresponding 1D model, we have to perform an in-plane

weighted sum of information preserving the energy flow. We therefore look

for generalized forces whose work equates the work done by the nodal forces

with respect to the imposed wave motion. We first define a generalized
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displacement function which emulates the incident acoustic wave:

ζ(x, y) = exp(−i(kxx+ kyy)) . (28)

Starting with the bottom surface, the total works done by the four sets of

bottom nodal forces with respect to wave motion can be expressed as

nBs∑
j=1

ζ(xBsj, yBsj)e
′
Bηj = êBη ,

nBf∑
j=1

ζ(xBfj, yBfj)e
′
Bfj = êBf (29)

where η = x, y, z, (xBsj, yBsj) and (xBfj, yBfj) are the coordinates of the j-

th node of the solid phase and of the fluid phase respectively, nBs and nBf

are the number of nodes on the bottom surface for the solid and the fluid

phase and êBη and êBf are generalized forces formally placed at the origin

of the axis (o) where wave motion is unitary (ζo = 1). Collecting the four

generalized forces in the vector êB = [êBx êBy êBz êBf ]
T , we obtain

êB =

[
I3 ⊗ ζBs 0

0 ζBf

]
e′B = LBe

′
B , (30)

where ζBs and ζBf are row vectors collecting the evaluations of the wave

function, ζ, at bottom nodes for the solid phase and for the fluid phase

respectively, I3 is the identity matrix of size 3 and ⊗ denotes the Kronecker

product. Hence, the nodal displacements vector, q′B, can be expressed in

terms of the vector of a generalized displacements, q̂B = [q̂Bx q̂By q̂Bz p̂B]T ,

by equating the work done by the generalized forces to the work done by the

nodal forces:

(êB)H q̂B = (e′B)Hq′B → q′B = LHB q̂B . (31)

The vectors of generalized forces and displacements for the top surface, êT

and q̂T , can be derived in the same manner by obtaining the top reduction
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matrix LT . If the nodes on the bottom and top surfaces are identically

arranged, then the top reduction matrix, LT , equates the bottom reduction

matrix, LB. Exploiting the projection of the nodal forces, Eq. (30), and the

expansion of the generalized displacements, Eq. (31), for both the top and

bottom surface, the 1D dynamic problem can be derived:[
LBC

′
BBL

H
B LBC

′
BTL

H
T

LTC
′
TBL

H
B LTC

′
TTL

H
T

]{
q̂B
q̂T

}
= C

{
q̂B
q̂T

}
=

{
êB
êT

}
. (32)

Since matrices LX are condensation operators, their application on the sub-

matrices in Eq. (32) increases the efficiency in solving the linear systems in

Eq. (26). In fact, terms D
′−1
II D′IX in Eq. (26) can be evaluated directly in

Eq. (32) as D
′−1
II

(
D′IXL

H
X

)
so involving the solution of two liner systems for

a significantly lower number of columns. Such a shrewdness ensures great

efficiency for unit cells with several internal DOFs. Finally, the problem can

be rearranged in the form[
−C−1

TBCTT C−1
TB

CBT −CBBC
−1
TBCTT CBBC

−1
TB

]{
q̂T
êT

}
= T′(ω, θ, α)

{
q̂T
êT

}
=

{
q̂B
êB

}
,

(33)

where T′(ω, θ, α) is the transfer matrix of the layer related to the original

variables for a specific incident plane wave.

3.3. Choice of interface variables

The final step in the procedure represented in Fig. 2 involves manipulation

of the resulting transfer matrix, T′(ω, θ, α), taking into account the requested

variables at its interfaces. Only three kind of interfaces are allowed by the

present model: solid, fluid and mixed. The TMM variables usually chosen
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to describe the acoustic field in these interfaces are collected in the following

vectors

Vfluid = [ p , vfz ]T , (34)

Vsolid = [ vx′ , vz , σzz , σzx′ ]T , (35)

Vmixed = [ vx′ , vz , v
f
z , σzz , σzx′ , p ]T . (36)

It should be noted that when the bottom and top interfaces are of a different

nature, we obtain a rectangular transfer matrix; see the periodic structure

on the right side of Fig. 4. For fluid or mixed interfaces the fluid velocity at

the boundaries can be expressed as

vfz = ± ef
iωρfA

, (37)

where the total area of the unit cell, A = LxLy, is involved. The term is pos-

itive for the bottom surface and negative at the opposite one, since positive

displacement at the bottom boundary increases pressure and consequently

fluid energy.

First, we show how to manipulate the original transfer matrix for a layer

with both fluid interfaces. The quantities collected in the vector Vfluid can be

expressed in terms of generalized variables, for the bottom and top surfaces,

in the following way

VB = [ p̂B , êBf/(iωρfA) ]T

VT = [ p̂T , − êTf/(iωρfA) ]T .
(38)

The final transfer matrix in Eq. (2) therefore becomes

T =

[
1 0

0 1/(iωρfA)

]
T′

[
1 0

0 −iωρfA

]
. (39)
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We now manipulate the original transfer matrix for a layer with both solid

interfaces. The quantities collected in the vector Vsolid can be expressed

in terms of generalized variables, for the bottom and top surfaces, in the

following way

VB = [ iω(Cq̂Bx + Sq̂By) , iωq̂Bz , − êBz/A , − (CêBx + SêBy)/A ]T

VT = [ iω(Cq̂Tx + Sq̂Ty) , iωq̂Tz , êTz/A , (CêTx + SêTy)/A ]T

(40)

where C = cos(α) and S = sin(α). So, the final transfer matrix in Eq. (2)

appears as

T =

[
iωE 0

0 −F/A

]
T′

[
ET/(iω) 0

0 AFT

]
, (41)

where

E =

[
C S 0

0 0 1

]
, F =

[
0 0 1

C S 0

]
. (42)

Finally, the transfer matrix for a layer with both mixed interfaces is de-

rived. The quantities collected in the vector Vmixed can be expressed in terms

of generalized variables, for the bottom and top surfaces, as follows

VB = [ iω(Cq̂Bx + Sq̂By) , iωq̂Bz, êBf/(iωρfA) , − êBz/A , − (CêBx + SêBy)/A , p̂B ]T

VT = [ iω(Cq̂Tx + Sq̂Ty) , iωq̂Tz , − êTf/(iωρfA) , êTz/A , (CêTx + SêTy)/A , p̂T ]T

(43)

The final transfer matrix thus becomes

T =

[
iωÊ G/(iωρfA)

G −F̂/A

]
T′

[
Ê
T
/(iω) GT

−iωρfAGT AF̂
T

]
(44)

where

Ê =

C S 0 0

0 0 1 0

0 0 0 0

 , F̂ =

0 0 1 0

C S 0 0

0 0 0 0

 , G =

0 0 0 0

0 0 0 0

0 0 0 1

 . (45)
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The transfer matrix of a layer characterized by in-plane periodicity has

been derived on the basis of a FE model of its unit cell. The matrix obtained

fully defines the layer in a TMM context and can also describe a sequence of

a finite number of identical sub-layers by means of Eq. (12).

4. Applications

The procedure presented above has been integrated in a homemade TMM

code, also implementing the analytical formulations of layers of different types

and handling various kinds of stratification. To verify the effectiveness of the

proposed procedure, the media accounted for will be interposed between two

semi-infinite fluids with ρ = 1.25 kg m−3 and c = 343.6 m s−1 and results will

be compared in terms of the Transmission Loss (TL) in diffusive field with

0 ≤ θ ≤ π/2 in Eq. (11). A mesh convergence study is presented only for the

first application. In the following applications only the results related to the

discretization that satisfactorily balances accuracy and computing resources

for the frequency range explored are reported.

4.1. Uniform plate

The first application is intended to prove the effectiveness of the solid in-

terfaces condition, Eq. (41). It concerns a 10 mm thick aluminum alloy (E=72

GPa, ν= 0.3, ρ= 2800 kg m−3) plate. The periodic unit is a brick as thick

as the plate. It has been modeled with elements of first and second order.

In-plane dimensions and discretization of the unit cell have been proven to

have no effect on the results. The panel may be modeled with n hexahedron

elements (hexa for short) through the thickness. Alternatively, it may be

divided into n identical sub-layers, each modeled with a single hexa: transfer
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matrices are evaluated for a single sub-layer and global transfer matrices are

derived by means of Eq. (12). The two approaches provide the very same

results while the second one significantly decreases the computational bur-

den. The results of the proposed procedure have been compared with those

obtained through the analytical model of the solid layer. Fig. 6 shows the TL

factors obtained with 8-node and 20-node hexas. It is clear that the number

of 8-node sub-cells strongly affects the solution while the calculation with a

single 20-node sub-cell reaches the analytical solution in the frequency range

explored. The description of the shear and longitudinal waves involved in the

acoustic transmission improves as long as the number of hexas through the

thickness grows and the error decreases according to the FE order. However,

the number of sub-cells does not significantly affect the computational cost,

since Eq. (12) is exploited. This simple application proves the effectiveness

of the method developed for layers with solid interfaces.

4.2. Unidirectional fiber-reinforced composite

The second application involves a thin composite plate whose equivalent

mechanical properties have been derived in [33] by means of FE analysis and

the rule of mixtures (ROM). They have been here used with analytical 3D

elasticity theory [27] to predict sound transmission. The mechanical prop-

erties of the basic materials are presented in Table 1 while the two selected

equivalent material models are listed in Table 2. The plate is 1.5 mm tick

unidirectional fiber-reinforced composite with a 50% fiber volume fraction

and a 7.6 µm fiber diameter. The medium comprises 157 identical layers

each containing a single row of fibers. Each layer is modeled with the sub-

cell depicted in Fig. 7 the sizes of which are 9.5252×9.5252×0.7938 µm3.
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Figure 6: Transmission loss in a diffuse field for an aluminum plate modeled with 8-node

hexas

The FE model of the unit cell is made of 8-node hexas and the properties of

the matrix and the fiber are listed in Table 1 [33] where the fiber direction,

k, corresponds to the y axis of Fig. 7. It is not truly representative of the

actual arrangement of fibers, but it is not expected to affect the results be-

cause of the high ratio of wavelength over fiber diameter. The results shown

in Fig. 8 prove the effectiveness of both the homogenization techniques in

the frequency range explored. In the frame of the acoustic prediction the

simplifications typical of the rule of mixtures are not relevant and sophisti-

cated homogenization techniques are not able to improve the model accuracy.

Because of the typical values of fiber diameters, discrepancies between the

periodic FE approach and equivalent homogeneous models are expected only

at very high frequencies. Nevertheless, at high frequencies, the diffusive in-
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Figure 7: FE model of a cell for an unidirectional fiber-reinforced composite, fibers (black)

and matrix (white)

put field could become non-representative, and the related integration has a

high computational cost, regardless of the way in which transfer matrices are

obtained. For these reasons, higher frequencies have not been explored.

Material E(GPa) G(GPa) ν ρ(kg m−3)

T300 Carbon Fiber k 230 8.96 0.20 1810

T300 Carbon Fiber ⊥ 13.75 4.83 0.25 1810

Amorphous Carbon Matrix 62.21 26.62 0.30 2000

Table 1: Properties of the materials used (k is the fiber direction)

Ek E⊥ Gk⊥ G⊥⊥ νk⊥ ν⊥⊥ ν⊥k ρ(kg m−3)

FEM 147.43 36.11 18.04 16.03 0.275 0.262 0.067 1905

ROM 149.61 30.50 15.60 15.72 0.250 0.275 0.067 1905

Table 2: Properties of the unidirectional fiber-reinforced composite (k is the fiber direction,

elastic moduli are expressed in GPa)
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Figure 8: Transmission loss in a diffuse field for an unidirectional fiber-reinforced composite

(α = π/2)

4.3. Sandwich panel with honeycomb core

The third application is intended to prove the effectiveness of the mixed

interfaces condition, Eq. (44). It concerns a sandwich panel with a honey-

comb core. Both the core and the skins are made of aluminum alloy (E=72

GPa, ν= 0.3, ρ= 2800 kg m−3). The skins are 0.5 mm thick and all the hon-

eycomb faces have 0.1 mm thickness. Two kinds of core have been considered,

hexagonal and auxetic. The hexagonal cells have a side of 10 mm and the

auxetic cells have a short side of 10 mm and a long side of 20 mm. Both cells

are 20 mm tall. Fig. 9 shows the in-plane geometry of the unit cells for both

core types. A three-node triangular element combining a Discrete Kirch-

hoff Triangle (DKT) bending element and a Constant Strain Triangle (CST)

membrane element has been used to model the honeycomb faces and skins. A
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four-node tetrahedral element has been used to model the acoustic cavities in

the honeycomb core. The panel has been modeled entirely with the proposed

procedure using the unit cells depicted in Fig. 10. Alternatively the structure

can be considered as layered: the total transfer matrix can be evaluated for a

specific incident plane wave as Tskin ·T4
core/4 ·Tskin, where Tskin is the transfer

matrix of the skin, involving the analytical formulation of a solid layer, and

Tcore/4 is the transfer matrix obtained with the proposed procedure for the

FE model restricted to the gray elements in Fig. 10. The latter approach is

the one preferred since it provides accurate results and significantly decreases

the computational burden. Usually, in vibro-acoustic applications, the hon-

eycomb core of a sandwich panel is modeled as an equivalent homogeneous

medium in order to exploit TMM capabilities. The in-plane and out-of-plane

equivalent mechanical properties of the honeycomb can be expressed in terms

of cell geometry and of the thickness of the faces [34]. Fig. 11 shows the TL

obtained through the proposed procedure (PFE), along with the analytical

calculation performed with the equivalent models (EM) of the honeycomb

cores. The presence of fluid in the honeycomb cavities has marginal effects

on acoustic transmission. The results demonstrate the effectiveness of the

equivalent model for the honeycomb core in the frequency range explored.

4.4. Double-leaf wall with internal structural links

The last application is intended to prove the effectiveness of the proposed

procedure for large heterogeneity scales. It concerns a double-leaf wall with

structural links between them. Two plates are linked by longitudinal verti-

cal septums. Both the plates and the septums are made of aluminum alloy

(E=72 GPa, ν= 0.3, ρ= 2800 kg m−3). Referring to Fig. 12, TS = TW =
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Figure 9: Minimal unit cell for the auxetic (left) and hexagonal (right) honeycomb core

Figure 10: Cell structural grid for the auxetic (left) and hexagonal (right) honeycomb core

1 mm, S = 100 mm and H = 10 mm. The three-node triangular element

described above has been used to model both the plates and the septums.

Four-node tetrahedral elements have been used to model the acoustic cavities.

Fig. 13 shows the structural mesh. Double panel structures filled with air or

absorbent fiberglass can be found in a wide range of applications and were

therefore extensively studied in the literature. A recent article by Hongisto

[35] provides a detailed comparison of the prevalent models for prediction of

sound transmission through such constructions. Of the 20 models presented,

only a few are able to deal with connections between panels. In these mod-

els, the problem is addressed by decoupling total transmission in terms of
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Figure 11: Transmission loss in a diffuse field for a sandwich panel with a honeycomb core

(α = 90)

a fluid-borne path through the cavity and a structure-borne path through

the connectors. Fig. 14 shows the TL obtained with the proposed procedure

along with the results provided by Davy’s model [36] which is declared in [35]

as the most accurate in terms of predicted sound transmission. Again, the

presence of fluid in the cavities has marginal effects on acoustic transmission.

The results prove the effectiveness of Davy’s model in the frequency range

explored, except in the coincidence region. In that application, because of the

large heterogeneity scale of the structure in relation to the frequency range

explored, the proposed procedure reveals its greater ability to handle local

dynamics with respect to equivalent homogeneous models such as Davy’s.
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Figure 14: Transmission loss in a diffuse field for a double-leaf wall with structural links

(α = 0)

5. Conclusions

A general procedure for obtaining the acoustic transfer matrix of a pla-

nar periodic medium is described. The procedure involves manipulating the

dynamic stiffness matrix of the FE model related to the unit cell: the wave

approach is applied to the unit cell, and a further projection based on the

trace of the incident wave leads to the transfer matrix of the medium. The

matrix thus obtained is used in a TMM context to predict sound transmission

through the medium. The proposed procedure preserves the local dynamics

involved in the acoustic transmission through the medium, preventing the

problem of dealing with dispersion curves and SEA models. Moreove, it al-

lows to exploit the versatility of the TMM and makes it easy to deal with

anisotropic and heterogeneous media in a TMM context, avoiding the need
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for homogeneous equivalent models and overcoming their limitations.

The accuracy of the model in predicting sound transmission loss has been

verified through agreement with the analytical formulation of a homogeneous

plate. Applications to non-homogeneous media make it possible to assess the

accuracy of the corresponding simplified, equivalent models. The FE model

can be related to the whole thickness of the structure, in this case the transfer

matrix obtained does not need further manipulations. In case of different

layers with the same nature, the TMM allows to build the complete model

by simply multiplying individual matrices. In case of layers with different

nature, adequate interface relations are available in the frame of TMM. The

computational effort related to the proposed procedure depends on the FE

model size. In homogeneous media, it appears only slightly higher with

respect to that of the analytical procedure: they may be modeled with a

few finite elements by exploiting the ability to model only a portion of the

thickness and by recovering the overall transfer matrix as a power of the

elementary one.

Ultimately, the proposed procedure, combined with TMM, could rep-

resent an effective acoustic tool in a FE analysis environment, due to its

versatility and efficiency.
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