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I. Introduction

Constrained attitude motion-planning for spacecraft is necessary in many mission scenarios, for

example, when the spacecraft has a sensitive instrument which may become damaged if pointed

within a certain angle of the Sun. Several approaches to the general constrained attitude motion-

planning problem have been developed. For example, Hablani1 developed attitude commands from

a geometric perspective, defining exclusion (or keep-out) zones on a unit sphere and determining

ideal tangential paths around these zones. McInnes2 approached the problem by applying the

potential function method. Artificial potential functions guide the satellite during the attitude ma-

neuver and avoid violation of pointing constraints by overlaying regions of high potential around

the forbidden regions. Henri et al.3 discretized the unit sphere into a graph and an admissible

path between attitude keep-out zones is found with the A* pathfinding algorithm. Frazzoli et al.4

use randomized path planning algorithms. Here, solution paths are chosen at random and a tree

of possible paths are evaluated to the target direction. The lowest cost admissible path is chosen.

In contrast to almost all other methods in the literature Frazzoli et al.4 treat the problem directly

on the Special Orthogonal Group SO(3) whose elements R(t) ∈ SO(3) satisfy the orthonormal

frame constraints R(t)TR(t) = I3×3 where I3×3 is the identity matrix and det(R(t)) = 1. Using

SO(3) to represent the spacecraft’s rotation allows pointing constraints to be imposed on multiple

body-fixed directions and to represent the spacecraft’s motion in a unique and singularity free way.

*Associate Professor, Department of Aerospace Science & Technology, jamesdouglas.biggs@polimi.it.
†Under-Graduate Student, Department of Mechanical & Aerospace Engineering, lucy.colley@strath.ac.uk.
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This Note presents a semi-analytical method for motion-planning with pointing and dynamic

constraints in two stages: Firstly, the path-planning problem with pointing constraints is addressed

using parameter optimization of an analyticaly defined cost function on the virtual domain t ∈
[0, 1], and secondly dynamic constraints are addressed on the real time domain τ ∈ [0, Tf ] where

Tf is the final time, by adjusting the speed at which the spacecraft motions along the derived

path. The analytical formulation of the problem allows a simple method for re-shaping the path

between two prescribed rotations so that it can avoid forbidden regions. The approach described

in this Note has the advantage that it is simple to implement, deterministic (if the optimizer used is

deterministic), does not require discretization or integration, is easily adjusted to satisfy actuator

constraints and expressed explicitly on the Special Orthogonal Group SO(3) (as opposed to using

a local parameterization such as Euler angles).

The proposed method uses a shape-based approach commonly used in problems of inverse dy-

namics. For example, simple functions such as polynomials are often used as basis functions for

motion-planning and optimized using inverse dynamics. In particular, attitude motion-planning

on the unit quaternions has been undertaken using exponentials of polynomial functions5 to min-

imize time and direct normalization of polynomials6 to design smooth feasible motions to reduce

spill-over for flexible spacecraft. These shape-based methods have not been adapted to the rotation

group SO(3) which has the additional complexity of shaping nine components of the rotation ma-

trix and satisfying the orthonormal frame constraints. This Note presents an analytically defined

set of paths on SO(3) that are defined in terms of free parameters that can be adjusted to match the

boundary conditions and re-shape the path to avoid a forbidden region. The analytically defined

paths on SO(3) are derived from an optimal control problem whose quadratic cost function is a

weighted integral function of the angular velocities. Exploiting the symmetries of the problem a

special case is solved analytically and used to develop the motion-planning method.

II. Previous Results on Optimal Kinematic Control on SO(3)

In this Note the paths on SO(3) are derived from a special case of an optimal kinematic control

problem on SO(3).7 Moreover, a fixed end point problem is considered where R0 = R(0), RTf
=
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R(Tf ) where Tf is the fixed final time subject to the kinematic constraint

Ṙ(t) = R(t)Ω, (1)

where Ω = ω1A1+ω2A2+ω3A3 where ω1, ω2, ω3 are the components of the angular velocity vector

ω = [ω1, ω2, ω3]
T and A1, A2, A3 are the basis of the Lie algebra so(3), the space of 3 × 3 skew-

symmetric matrices with the additional structure of a Lie bracket defined by [X, Y ] = XY − Y X

where X, Y ∈ so(3). The choice of the basis A1, A2, A3 ∈ so(3) is

A1 =

⎛
⎜⎜⎜⎜⎝

0 0 1

0 0 0

−1 0 0

⎞
⎟⎟⎟⎟⎠ , A2 =

⎛
⎜⎜⎜⎜⎝

0 0 0

0 0 −1

0 1 0

⎞
⎟⎟⎟⎟⎠ , A3 =

⎛
⎜⎜⎜⎜⎝

0 −1 0

1 0 0

0 0 0

⎞
⎟⎟⎟⎟⎠, (2)

where physically A1, A2, A3 define the infinitesimal rotations in the roll, pitch and yaw directions

respectively. The cost function J1 to be minimized is a quadratic function of the angular velocity

components

J1 =
1

2

1∫
0

c1ω
2
1 + c2ω

2
2 + c3ω

2
3dt, (3)

where c1, c2, c3 > 0 are arbitrary weights and t ∈ [0, 1] is the virtual domain. This cost function

allows one to define a large class of motion where the weights of the cost function can be chosen

to alter the shape of the path between two prescribed boundary configurations. This problem can

be solved via an application of the co-ordinate free Maximum Principle8 to yield the necessary

conditions for optimality7

Ṁ1 =
c2−c3
c2c3

M2M3

Ṁ2 =
c3−c1
c1c3

M1M3

Ṁ3 =
c1−c2
c1c2

M1M2,

(4)

where M1,M2,M3 are the extremal curves that define the optimal angular velocities ω∗
1, ω

∗
2, ω

∗
3 via

the expressions

ω∗
1 = M1/c1, ω

∗
2 = M2/c2, ω

∗
3 = M3/c3. (5)
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Numerical shooting has been proposed as a method to solve this optimal kinematic control problem

and match the boundary conditions on the rotation.7 However, for the rotation group extensive nu-

merical shooting is required to match the nine components of the rotation matrix at the prescribed

final time. Furthermore, using numerical shooting to solve the necessary conditions for optimal-

ity subject to the given boundary conditions7 does not consider the possibility of the inclusion of

forbidden regions or the dynamic feasibility of tracing the path. In this Note we use a special

analytic solution of the extremal curves Eq. (4) to develop an attitude motion-planner that can

incorprate pointing and actuator constraints through an iterative process of parameter optimization

and inverse dynamics respectively.

III. Analytic Derivation of a Class of Rotational Motions

The functions that will be used to develop the motion-planner are a special solution of the necessary

conditions for optimailty described by Eq. (4). In order to derive these functions the conserved

quantities

H =
1

2
(
M2

1

c1
+

M2
2

c2
+

M2
3

c3
), M = (M2

1 +M2
2 +M2

3 ), (6)

are used. There are a number of particular solutions of Eq. (4) that can be analytically defined.

For example, when c1 = c2 = c3 the extremal curves are constant. However, setting this condi-

tion means that c1, c2, c3 are fixed and cannot be freely set to re-shape the path if the initial path

intersects the forbidden region. Another special solution of the necessary conditions for optimality

are the heteroclinic connections of Eq. (4) which can be expressed in terms of hyperbolic and

trigonometric functions.9 Setting the particular value for the weight c3 = M
2H

then using Eq. (4)

and Eq. (6) it can be shown that:

M1 = Asech(γt+ C), M2 = Bsech(γt+ C), M3 = Dtanh(γt+ C), (7)

where D = s1s2
√
M , A = s1

√
c1(2Hc2−M)

c2−c1
, B = s2

√
c2(M−2Hc1)

c2−c1
where s1, s2 are s1 = sgn(M1(0)),

s2 = sgn(M2(0)) and where γ =
√

−(M−2Hc1)(M−2Hc2)
c1c2M

is given by substitution into Eq. (4). The

extremals Eq. (4) can be expressed in vector form L̇ = ∇H×L where L = ∇M and L,∇H ∈ R
3
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where ∇ is the gradient. Equivalently Eq. (4) can be expressed in Lax Pair form on the Lie

group SO(3) where L̇ = [L,∇H] where L,∇H ∈ so(3).8 Moreover, the solution to the Lax Pair

equations are of the general form:

L(t) = R(t)−1L(0)R(t). (8)

A particular solution Rp(t) can then be chosen such that

Rp(t)L(t)Rp(t)
−1 =

√
MA3, (9)

then substituting

Rp(t) = exp(φ1A3) exp(φ2A2) exp(φ3A3), (10)

into Eq. (9) and Eq. (1) the following expressions can be obtained through algebraic manipulation:

cosφ2 =
M3√
M
, sinφ2 =

√
M−M2

3√
M

cosφ3 =
M1√
M−M2

3

, sinφ3 =
M2√
M−M2

3

,
(11)

which for the extremal curves of hyperbolic type described by Eq. (7) are explicitly:

cosφ2 = s3 tanh(γt+ C), sinφ2 = sech(γt+ C)

cosφ3 =
A√
M
, sinφ3 =

B√
M
.

(12)

Note that φ2 ∈ [0, π] as sech(γt + C) ≥ 0. Substituting Eq. (10) into Eq. (1) and using the

expressions in Eq. (12) with c3 = M/2H leads to:

φ1 =
2H√
M

t+ β, (13)

where β is a constant of integration which can be set to zero without loss of generality due to the

rotational symmetry. Then substituting Eq. (13) and Eq. (12) into Eq. (10) yields the particular

rotation matrix Rp(t). A general rotation matrix R(t) can then be expressed for any initial condition
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R(0) as:

R(t) = R(0)Rp(0)
−1Rp(t), (14)

with Rp(t) = (x y z) where the orthonormal vectors x, y, z are defined by:

x =
1√
M

⎡
⎢⎢⎢⎢⎣

A cosφ1 − Bs1s2 tanh(γt+ C) sinφ1

A sinφ1 +Bs1s2 tanh(γt+ C) cosφ1

Bsech(γt+ C)

⎤
⎥⎥⎥⎥⎦ (15)

y =
1√
M

⎡
⎢⎢⎢⎢⎣

−As1s2 tanh(γt+ C) sinφ1 − B cosφ1

As1s2 tanh(γt+ C) cosφ1 − B sinφ1

Asech(γt+ C)

⎤
⎥⎥⎥⎥⎦ (16)

z =

⎡
⎢⎢⎢⎢⎣

sinφ1sech(γt+ C)

− cosφ1sech(γt+ C)

s1s2 tanh(γt+ C),

⎤
⎥⎥⎥⎥⎦ (17)

where C = tanh−1(M3(0)/(s1s2
√
M)). Note that these functions are expressed completely in

terms of t, c1, c2 and the free parameters M1(0),M2(0),M3(0). Therefore, given a final time t = 1

and the prescribed weights c1, c2, the parameters M1(0),M2(0),M3(0) can be optimized to match

the boundary conditions R0 = R(0) and R1 = R(1) on the virtual domain as described in the

following section.

IV. Attitude Motion-Planning with Constraints

This section introduces the general motion-planning method in the presence of pointing and actua-

tor constraints. Sub-section A describes the general path-planning procedure on the virtual domain

t ∈ [0, 1]. Sub-section B extends this method to include a forbidden pointing direction. By iterating

the relative weights of the cost function the path is re-shaped between the prescribed boundaries.

Sub-section C considers the motion-planning problem that uses time-parameterization to augment

the angular velocity along the path in SO(3) and through inverse dynamics ensure that the actuator

torque limits and rate limits are respected.
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A. Path-Planning Algorithm on the Rotation Group

To describe the implementation of the basic path-planner given the final time t = 1 and the pre-

scribed weights c1 and c2, we define the vector X = [M1(0),M2(0),M3(0)]
T , where M1(0),M2(0)

and M3(0) are the initial conditions of the extremal curves. The Hamiltonian and Casimir in Eq.

(6) for c3 =
M
2H

can be expressed in terms of X such that

H =
1

2

(
M1(0)

2

c1
+

M2(0)
2

c2
+

M3(0)
2(M1(0)

2/c1 +M2(0)
2/c2)

M1(0)2 +M2(0)2

)
, (18)

and

M = M1(0)
2 +M2(0)

2 +M3(0)
2. (19)

To match the boundary conditions R0 = R(0) and R1 = R(1), R(0) is simply stated in equation

(14) and defining Rd to be the desired rotation at t = 1 and I3×3 the identity matrix, then X is

optimized such that the rotation error defined by

‖Re‖ = tr[I3×3 −R(1)TRd)] (20)

is minimized within some prescribed error tolerance. To demonstrate this we set the boundary

conditions to R(0) = I3×3 and

Rd =

⎡
⎢⎢⎢⎢⎣

−0.782 0 0.623

−0.623 0 −0.782

0 −1 0

⎤
⎥⎥⎥⎥⎦ . (21)

The error (20) is a nonlinear function of X and must be solved numerically. The numerical problem

can be formulated as a parameter optimization problem and X can be chosen using an appropriate

numerical method to minimize ‖Re‖. Initially the problem was optimized for fixed c2 = 1 and

c1 was varied between 0.9 and 0.1. A number of optimizers were used to test their suitability

for solving this problem. In Mathematica the Nelder-Mead (NM), Differential Evolution (DE),

Simulated Annealing (SA) and Random Search (RS) minimization methods were used.10 For
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c1 = 0.9 every method converged to the minimum with X = [1.71,−0.61,−1.612] and ‖Re‖ =

1 × 10−14. The projection of this curve onto the unit sphere is represented by the dashed line in

Fig. 1a. The CPU times in seconds were 0.36 for NM, 0.59 for DE, 0.406 for SA and 0.5 for

(a) (b)

Figure 1. Pointing direction projected onto the unit sphere: (a) displays a variety of paths between two fixed
end-points in SO(3) for varying c1 (b) displays a two-maneuver path between the same initial and final end
points in SO(3)

RS implemented on a standard 2 GHz, dual-core PC. Varying c1 down to 0.17 indicated similar

relative performance results of the optimizers. However, below these values there was a significant

variation in their performance. For, example at c1 = 0.1 the following errors were achieved 0.978

for NM, 1 × 10−12 for DE, 1 × 10−14 for SA and RS. The projection of the curve for SA and

RS onto the unit sphere are represented by the dot-dashed line in Fig. 1a. The reason for this

discrepency between the numerical optimizers is illustrated in Fig. 2. In particular, for c1 = 0.9

the value of ‖Re‖ as a function of M1(0) and M2(0) with the value of M3(0) given by the previous

optimization is shown in Fig. 2a. In this case we can see that there is only one minima and each

of the methods converge to it independently of any required initial guess. However, when c1 = 0.1

it can be seen in Fig. 2b that there are many local minima and that only the RS and SA methods

find the global minima of this surface. The poor performance of the NM method is due to the
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fact that it is a local optimization method and is heavily dependent on the initial guess. SA and

RS work by generating a population of random initial guesses in the search space and find a local

minimum from each point. The best local minimum is chosen to be the solution. Thus, SA and RS,

as implemented in Mathematica, were more robust to this problem involving many local minima.

This was true for all other selections for Rd that were selected in the cost function (Eq. (20)). This

initial analysis highlights the need to employ an optimizer within the path-planning method that is

robust to minimizing functions with a large number of local minima.

(a) (b)

Figure 2. The error ‖Re‖ as a function of M1(0) and M2(0) with fixed c1, c2,M3(0): (a) corresponds to c2 =
1, c1 = 0.9,M3(0) = −1.6124 and (b) to c2 = 1, c1 = 0.1,M3(0) = −0.116

B. Path-Planning with Pointing Constraints

In the case that the generated geometric path intersects a forbidden region a simple iterative pro-

cess can be used to augment the shape of the curve to avoid it. For example, fixing c2 = 1,

c1 can be adjusted incrementally and at each step X can be selected to minimize the function

‖Re‖. Figure 1a illustrates different pointing directions projected onto the unit sphere for dif-

ferent values of c1. From the left-most curve to the right most curves in Fig. 1a the values are

c1 = 0.9, 0.5, 0.1, 1.1, 5, 50. Any further increase in c1 has a negligable effect on the deviation

of the new path from the right-most one. All paths in Fig. 1a match the boundary condition

R1 = R(1) within an error tolerance of ‖Re‖ < 1 × 10−14. This procedure could potentially be

useful for avoiding small forbidden regions of the pointing direction while making accurate single

three-axis maneuvers. For example, if an initial curve for c1 = 0.1 intersects a small forbidden

9



region then c1 can be increased iteratively (avoiding the singularity c1 = c2) until the forbidden

region is avoided. Recall, for example, that the RS method requires a CPU time of approximately

0.5 seconds to undertake a single optimization. Then, the total time to compute a path to avoid

the obstacle will be the number of iterations divided by two. The number of iterations will depend

on the specified increments of c1 used. Moreover, with larger increments the total computation

time will be smaller but within a specified region there will be less curves to select from. In the

case that no curve avoids the forbidden region then a simple two (or more) maneuver problem can

be undertaken using this approach. This is illustrated in Fig. 1b where an intermediate boundary

condition R1 = R(1) is included such that the boundary conditions are R0 = R(0),R1 = R(1) and

RTf
= Rd where Tf = 2. In Fig. 1b c1 = 0.1 and can be fine tuned if required.

These derived paths are kinematically feasible and are defined on a virtual domain t ∈ [0, 1].

In order to address the dynamic feasibility of tracking these paths, the speed at which the path

in SO(3) is traced can be adjusted through a simple time-parameterization and the torque profile

checked through inverse dynamics.

C. Motion-Planning via Time-Parameterization

An inverse dynamics approach can be used to check if the control torque u(t) required to trace the

path in SO(3) is feasible given the actuator constraints by observing the inverse dynamics

u(t) = J
dω

dt
− Jω × ω, (22)

where J is the positive definite, symmetric inertia tensor. In general the planned path on the virtual

domain will not be dynamically feasible and time must be parameterized to alter the speed at which

the path in SO(3) is traced. Moreover, the virtual time t is expressed in a new time co-ordinate

which we call real time τ defined by t = F (τ). A new rotation is then defined as R∗(τ) = R(F (τ))

and it follows by a simple application of the chain rule that the corresponding real angular velocity

ω∗(τ) can be expressed as:

ω∗(τ) = ω(F (τ))
dF (τ)

dτ
. (23)
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For simplicity we denote ω∗(τ) by ω∗ and then the required torque to induce this motion can be

expressed as

u∗(τ) = J
dω∗

dτ
− Jω∗ × ω∗, (24)

where u∗(τ) = [u1, u2, u3]
T . For example to reduce the maximum required torque we can set

t = τ
Tf

with τ ∈ [0, Tf ]. The final time Tf can then be increased until the required maximum

torque falls within the maximum torque range of the actuators. Note that the geometric path will

remain unchanged during time-parameterization and thus will still avoid the original forbidden

region without the need to repeat the path-planning procedure.

Furthermore, we note that in general the angular velocities (Eq. (5)) corresponding to the

geometric path on SO(3) will be non-zero at the end points of the motion and the actuators will need

to supply an instantaneous torque at these boundaries, for example, natural rigid-body motions

in general describe motions with non-zero angular velocities at the boundaries and these can be

matched using instantaneous torque (an impulse).11 Such a situation is closely realizable with jet

thrusters. However, in the case where an instantaneous torque cannot be supplied, or it is not

desirable to do so, the parameterization function should be carefully chosen. Assuming that we are

working on the real time (in seconds) domain τ ∈ [0, Tf ], then real time can be parameterized again

such that τ = F (κ) where κ ∈ [0, Tf ]. For example, to avoid the need for instantaneous torques

at the end points of the motion one could choose the parameterization
dF (κ)
dκ

= 1 − cos
(

2πκ
Tf

)
to

guarentee a rest-to-rest attitude motion such that

F (κ) = κ−
(
Tf

2π

)
sin

(
2πκ

Tf

)
(25)

the angular velocity components Eq. (5) in real time κ ∈ [0, Tf ] will then be

ω∗
1 = A

Tf c1
sech(γ( κ

Tf
− (

1
2π

)
sin

(
2πκ
Tf

)
) + C)(1− cos

(
2πκ
Tf

)
),

ω∗
2 = B

Tf c2
sech(γ( κ

Tf
− (

1
2π

)
sin

(
2πκ
Tf

)
) + C)(1− cos

(
2πκ
Tf

)
),

ω∗
3 = s3

√
M

Tf c3
tanh(γ( κ

Tf
− (

1
2π

)
sin

(
2πκ
Tf

)
) + C)(1− cos

(
2πκ
Tf

)
).

(26)

To demonstrate the effect of time-parameterization we select the initial path on t ∈ [0, 1] with
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c1 = 0.9, c2 = 1 and X = [1.71,−0.61,−1.612]. The case Tf = 1 s is equivalent to the initial

problem on the virtual domain. For the final time Tf = 1 s, the effect of the time-parameterization

in Eq. (25) is demonstrated so that the original motion on the virtual domain can be compared

directly with the parameterized path. The corresponding pointing direction is plotted against time

along with their angular velocities as shown in Fig. 3. This has the effect of smoothing the angular

velocities at the end-points and thus eliminating the requirement to use jet thrusters to match the

boundary conditions.

Figure 3. Pointing direction (the first normalized column vector of the rotation matrix) and angular velocity
against time; with parameterization of (25) (dashed-line) and without parameterization (solid-line)

The final time Tf is then adjusted to ensure that the maximum required torque is less than the

maximum torque that can be produced by the actuators. For example, for a micro-satellite we

assume the principal moments of inertia I1 = 19, I2 = 19.5, I3 = 2.6 (kg-m2) and the products of

inertia to be zero in Eq. (24) with the angular velocity Eq. (26) and a maximum torque of 0.1 N-m

for micro-satellite reaction wheels. If we set Tf = 80 s to give the spacecraft a reasonable amount

of time to perform the motion the corresponding angular velocity and torque profile is shown in

Fig. 4 and are clearly feasible within the actuator constraints.
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Figure 4. Final angular velocity and torque components over time: Dot - Dashed line corresponds to the angular
velocity ω1 and the torque component u1, the dashed line to ω2 and u2 and the solid line to ω3 and u3

V. Conclusion

This Note presents a geometric method for path-planning on SO(3). The method uses an analytic

solution of an optimal kinematic control problem whose cost function is an integral of a quadratic

function of the angular velocities with arbitrary weights. For prescribed relative weights and ini-

tial configuration, three parameters of the analytically defined rotation matrix can be optimized

to match the boundary condition on the prescribed final configuration. In addition the relative

weights of the cost function can be iteratively changed and optimized at each stage in order to re-

shape the path between the prescribed boundary conditions. This process is potentially useful for

avoiding small forbidden regions in multiple axis if the original paths intersects it. Furthermore,

large forbidden regions could be avoided by introducing intermediate boundary conditions and in-

terpolating between them. Due to the analytic nature of the paths the time can be parameterized

13



to account for limit and rate limit constraints of the actuators. The method does, however, rely on

the use of a robust parameter optimization method that can accurately detect the global minima in

the presence of many local minima inherent in the problem for some particular weights of the cost

function.
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