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Abstract. Preoperative three-dimensional (3-D) visualization of brain vasculature by digital subtraction angiog-
raphy from computerized tomography (CT) in neurosurgery is gaining more and more importance, since vessels
are the primary landmarks both for organs at risk and for navigation. Surgical embolization of cerebral aneurysms
and arteriovenous malformations, epilepsy surgery, and stereoelectroencephalography are a few examples.
Contrast-enhanced cone-beam computed tomography (CE-CBCT) represents a powerful facility, since it is
capable of acquiring images in the operation room, shortly before surgery. However, standard 3-D reconstruc-
tions do not provide a direct distinction between arteries and veins, which is of utmost importance and is left to the
surgeon’s inference so far. Pioneering attempts by true four-dimensional (4-D) CT perfusion scans were already
described, though at the expense of longer acquisition protocols, higher dosages, and sensible resolution
losses. Hence, space is open to approaches attempting to recover the contrast dynamics from standard
CE-CBCT, on the basis of anomalies overlooked in the standard 3-D approach. This paper aims at presenting
algebraic reconstruction technique (ART) 3.5D, a method that overcomes the clinical limitations of 4-D CT, from
standard 3-D CE-CBCT scans. The strategy works on the 3-D angiography, previously segmented in the stan-
dard way, and reprocesses the dynamics hidden in the raw data to recover an approximate dynamics in each
segmented voxel. Next, a classification algorithm labels the angiographic voxels and artery or vein. Numerical
simulations were performed on a digital phantom of a simplified 3-D vasculature with contrast transit. CE-CBCT
projections were simulated and used for ART 3.5D testing. We achieved up to 90% classification accuracy in
simulations, proving the feasibility of the presented approach for dynamic information recovery for arteries and
veins segmentation. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.3.4.044002]
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1 Introduction
Segmentation and visualization of brain vessels are important in
many neurological diagnostic and therapeutic applications.
Despite the advent of several noninvasive angiographic tech-
niques, indications for catheter angiography are still numerous.1

Embolization of cerebral arteriovenous malformations (AVMs), or
their radiosurgical treatment, makes the three-dimensional (3-D)
reconstruction of brain vasculature of utmost importance.2,3

In addition, several studies indicate that 3-D visualization of
brain vasculature within multimodal imaging proved to be useful
in epilepsy surgery, nonetheless it is still underutilized in clinical
practice.4–8 In particular, during stereoelectroencephalography
(SEEG) procedures, intracerebral electrodes must be implanted
avoiding vessel hurting and subsequent intracranial bleeding.9–14

In addition to the vascular tree reconstruction, the detached visu-
alization of arteries and veins could be advantageous to surgical
treatment planning. In fact, the visualization of AVM feeding
vessels, nidus, and draining veins could be easier.15 Also, the
planning of SEEG-guided radio-frequency thermal ablations16,17

could be safer thanks to a better estimation of the risk related
to arteries or veins proximity. In addition, the separate visu-
alization of arteries and veins could be helpful when 3-D

multimodal scenes are utilized to plan and perform brain resec-
tions,5,8 providing clearer anatomical landmarks helping to com-
pare such complex images with the surgical field.

Several techniques are used for the separation of arterial from
venous structures such as magnetic resonance angiography
(MRA)-based and four-dimensional (4-D) CT-based techniques.

Contrast-enhanced-MRA (CE-MRA) techniques address
a phase-contrast or a time-resolved acquisition approach,18,19

followed by correlation analysis and graph searching methods
as postprocessing techniques.20,21 In Bock et al.,20 a correlation
analysis method is employed on a 3-D MR angiogram of the
lung, sampled during the breath-hold with a 3-D FLASH
pulse sequence. In Sonka et al.,22 a graph search approach is
exploited consisting of a seeded region growing for vascular
tree segmentation, followed by a graph search that determined
the most favorable path starting from a set of points defined by
the user, taking into account the morphological features in order
to chose the optimal path. In Niessen et al.,21 an enhanced artery
visualization method allows one to segment large venous struc-
tures in the upper leg/abdominal region. Finally, Lei et al.15

introduced a fuzzy connected object delineation approach and
separated arteries from veins using an iterative relative fuzzy
“connectedness” measure.
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In 4-D CT-based methods, several image volumes are
acquired (around 20 volumes on average) while the contrast
medium is flowing in the vessels, obtaining a 4-D CT perfusion
(CTP) scan. This imaging method is particularly suitable for
arteries and veins segmentation even if it is worse in spatial
resolution with respect to standard 3-D CT scans and has a
very limited temporal resolution.

In Laue et al.,23 a method based on unsupervised classifica-
tion of time intensity curves (TICs) is presented. TICs are com-
puted as the image intensity variation over time for each voxel.
A 4-D CT dataset, comprising 24 volumes, was acquired in a
time window of 200 s while nonionic contrast was injected.
K-means clustering was applied to TICs and three clusters
were identified, namely the arteries, the veins, and the vessels
outside the brain. No numerical results are reported for this
work. Mendrik et al.24 combined a CTP scan and a CT angi-
ography (CTA). They segmented the vasculature using the
Gaussian first-derivative information and separated arteries
from veins using the time to peak (TTP) information. The voxels
were labeled as artery or vein depending on their TTP being
similar to an arterial or a venous TTP zero-crossing. Sensitivity
values between 0.928 and 0.958 were obtained, together with
specificity values between 0.964 and 0.985 and accuracy values
between 0.961 and 0.963. Separate arteriogram and venogram
were constructed. All the MRA and 4-D CT methods presented
above require the acquisition of many images, with different im-
aging methods. Though successful, those methods are often dif-
ficult to apply in a clinical context, since the acquisition and
processing of several images are expensive and time consuming
for the surgeons.

This paper presents a method for arteries and veins segmen-
tation, obtained through the postprocessing of cone-beam CT
(CBCT) raw projection data together with the angiogram
obtained from a CBCT digital subtraction angiography (DSA).
Unlike 4-D CT techniques, the use of a standard CBCT dataset
does not require any additional x-ray exposure of the patient and
ensures a better resolution with respect to 4-D scans. Moreover,
the CBCT represents a powerful facility, since it is capable of
acquiring images in the operation room, shortly before surgery.

2 Methods
In order to label arteries and veins from CBCT scans, the alge-
braic reconstruction technique (ART) was extended dynami-
cally, in order to account for dynamic changes of voxel
intensity values in time, according to the progression of contrast
medium. Voxel-wise dynamic variations were described by a
TIC. TICs were modeled by a set of temporal basis functions
in order to capture, with a minimal parameter set, regular
wash-in wash-out features and approximate timing sufficient
to separate arteries and veins.

2.1 Contrast Time Profile Reconstruction

A general linear time invariant (LTI) system is formalized as

EQ-TARGET;temp:intralink-;e001;63;160p ¼ Wμ; (1)

where W is the system matrix, μ is the unknowns vector, and p
is the measures vector. The system is

EQ-TARGET;temp:intralink-;e002;326;752pi ¼
XJ
j¼1

wi;j · μj ¼ jwi;1; : : : ; wi;Jj ·
������
μ1
: : :
μJ

������: (2)

In the case of image reconstruction, pi is a single projection
element, the terms wi;j are the system matrix elements, and
the terms μj are the image voxel values to be computed.

In standard CBCTs, projections are taken on the flat
panel device (FPD) at discrete angles θk, at proportional time
instants tk:

EQ-TARGET;temp:intralink-;e003;326;639θk ¼ ωtk

�
k ¼ 1; : : : ; K;ω ¼ 2π

T

�
; (3)

where T is the revolution time in the order of tens of seconds,
12 s in our protocol, and K is the number of angular samples,
360 in our protocol. Obviously, the same proportion is found
between the angular increments and sampling time intervals:
Δθ ¼ ωΔt, with θk ¼ kΔθ and tk ¼ kΔt. The contrast infusion
protocols are calibrated in order to provide sufficient informa-
tion for a 3-D reconstruction, sufficient to angiographic segmen-
tation. In doing this, the contrast dynamics is overlooked, with
negligible artifacts relevant to the segmentation aim. Still, the
overlooked information is clearly visible as shown in the pro-
jections of the common example in Fig. 1. Clearly, the informa-
tion is incomplete and far from a complete 4-D dataset, since the
angle of view of each time sample is bounded:

EQ-TARGET;temp:intralink-;e004;326;451θk ¼ kðtkÞΔθ: (4)

Importantly, each projection angle θk leads to ðN ×MÞk projec-
tion values, pk, whereN andM are the dimensions of the FPD in
pixels (Fig. 2). ART schemes work on a column vector of pro-
jections p ¼ coljpij, ði ¼ 1; : : : ; I; I ¼ K × N ×MÞ. The spa-
tial position is not evidenced, but is obviously recoverable by
the vector construction rule: i ¼ iðθk; am; bnÞ, where am and
bn are the horizontal and vertical displacements on the FPD,
while θk is the focal spot rotation angle, which is the relevant
parameter in the dynamic problem.

The presented approach extends the iterative algebraic solu-
tion from an LTI to a linear time variant (LTV) system exploiting
information about system dynamics during contrast-enhanced
CBCT (CE-CBCT) acquisitions. The ART was thus extended
to the case of dynamic image reconstruction, accordingly named
ART 3.5D.

The goal of classifying arteries and veins permits a huge
reduction of the ART problem dimension by two aspects:
(1) an approximate voxel-wise TIC is sufficient to evaluate
the contrast TTP with the limited precision required to disentan-
gle arteries from veins, also considering the long capillary
phase; and (2) the dynamics of only the previously segmented
standard angiography is considered.

Hence, the full 4-D problem of order N4 is reduced below the
order N3 of the available CBCT projections. The following gen-
eral, though heuristic, reasoning was applied, yet to be validated
according to the specific dataset features: (1) the TIC is conven-
iently approximated by B ¼ 10 − 20 basis functions, at homog-
enous time shifts, with B ≪ N. In fact, given a predetermined
set of basis functions, the curve is represented from the coeffi-
cients multiplying the basis functions; and (2) the arteriography
projections are never fully dense, so the segmented tree is com-
posed by order N2 voxels, maximum. As a result, the number of
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unknowns (∼B × N2) ≪ number of equations (∼N3). This rea-
soning was validated according to the specific dataset features.
In particular, the CBCT standard acquisition protocol of the
O-ARM4 (Medtronic, Minneapolis, Minnesota)25 is taken as
reference, and the acquisition parameters are listed in Table 1.

Therefore, for a Medtronic O-arm system, the number of pro-
jection results is:

EQ-TARGET;temp:intralink-;e005;63;111Np ¼ N ×M × Nθ ¼ 384 × 1024 × 391 ∼ 153 × 106; (5)

and the number of unknowns is equal to

EQ-TARGET;temp:intralink-;e006;326;402Nu ¼ J × B ¼ ð512 × 512 × 192Þ × 10 ∼ 503 × 106; (6)

where J is the total number of voxels in a dataset and B is the
number of chosen basis functions. A reduction of a factor of 100
of the number of vascular voxel with respect to the total number
of voxels in a CT image has been hypothesized and afterward

j

pi

N

M

k

Fig. 2 Geometric schema of the acquisition process with indexed ele-
ments. pi is a projection element,N andM are the FPD dimensions, μj
is a voxel intensity value, and θk is the projection angle at time t k .

Fig. 1 Schema of the dynamic evolution of contrast flow during image acquisition. Arterial and venous
phases are highlighted.

Table 1 Medtronic O-ARM4 acquisition parameters.

Image dimension in voxels
(Nx

voxel, N
y
voxel, N

z
voxel)

(512, 512, 192)

Voxel spacing (w voxel) 0.415 mm

Slice thickness (t s) 0.833 mm

FPD dimension in pixel (N ×M) 384 × 1024

FPD pixel size (wpixel) 0.388

Rotation radius (R) 647.7 mm

Distance of FPD surface center
from isocenter

520.7 mm

Number of projections (Nθ) 391

Minimum angle (θmin) 0 deg

Maximum angle (θmax) 360 deg

Acquisition time (Ta) 12 s
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inspected in a real CTA dataset. Therefore, the number of
unknowns reduces to

EQ-TARGET;temp:intralink-;e007;63;730Nu ¼ J × B ×
1

100

¼ ð512 × 512 × 192Þ × 10 ×
1

100
∼ 5 × 106; (7)

which is lower than the number of projections. As already
stated, the hypothesis on the dimension reduction was verified
on a real dataset. Avessel segmentation and reconstruction were
obtained through a DSA in 3-D Slicer 4.3.1.26 The vessel
reconstruction was analyzed and the voxels belonging to the
vessel mask were counted resulting in an overall number of ves-
sel voxels equal to 962,573, which is approximately 0.1% of the
total number of image voxels. Then the hypothesis made is
widely respected, proving the problem to be well conditioned.

With the working hypothesis proved, the TIC was modeled
as a linear combination of basis functions, whose weighing coef-
ficients had to be estimated. The basis functions set was chosen
a priori (see Sec. 3.2) and included in the system matrix W. A
new system matrix,Wd, was introduced that combined the static
weights, wi;j, and the samples of the basis functions at each pro-
jection time, tk. Simple mathematical manipulations show how
the system matrix was expanded and the LTI problem rephrased
to an LTV one. First, the j’th voxel intensity, μj, was replaced
by a time function for the dynamic problem, the TIC
profile ¼ μjðtÞ. This time curve of each voxel was then modeled
through a linear combination of basis functions, as previously
introduced:

EQ-TARGET;temp:intralink-;e008;63;425μjðtÞ ¼
XB
b¼0

dj;b · qbðtÞ ¼ j dj;0 : : : dj;B j ·
������
q0ðtÞ
: : :
qBðtÞ

������; (8)

where the coefficients dj;b weight the B basis functions. The set
of weights dj;b corresponds to the new set of unknowns, for J
angiographic voxels, where J is the number of voxels belonging
to the vascular tree. Substituting the term μjðtÞ [expressed in
Eq. (8)] in the LTI problem formulation [Eq. (2)], the following
equation is obtained:

EQ-TARGET;temp:intralink-;e009;63;303pi ¼
XJ
j¼1

wi;j · μjðtÞ ¼
XJ
j¼1

wi;j ·

"XB
b¼1

dj;b · qbðtkÞ
#

(9)

and

EQ-TARGET;temp:intralink-;e010;63;240pi ¼
XJ
j¼1

XB
b¼1

qbðtkÞ · wi;j · dj;b: (10)

Since both the static system matrix elements wi;j and the basis
function samples qbðtkÞ are fixed and object independent,
the elements of a complete dynamic system matrix can be
defined as

EQ-TARGET;temp:intralink-;e011;63;150wd
i;j;b ¼ wi;j · qbðtkÞ; (11)

leading to a complete, yet unsolvable algebraic problem:

EQ-TARGET;temp:intralink-;e012;63;106pi ¼
XJ
j¼1

XB
b¼1

wd
i;j;b · dj;b; (12)

EQ-TARGET;temp:intralink-;e013;326;741p ¼ Wdμ: (13)

The new dynamic system matrix Wd has the same number of
rows I as W, but a column number increased to J × B as the
dimension of the vector of unknowns μd. A convenient ordering
of μd is by taking all basis function weights voxel-by-voxel;
thus, Wd groups B columns per voxel, repeating J times the
same order of basis functions. The prior segmentation, as
said, permits to reduce dimension to a solvable problem by con-
sidering only the angiogram voxels jϵfAngiog if the subtraction
among the contrast-enhanced and noncontrast-enhanced data-
sets is used as the projection dataset (pr ¼ pCE − p).

EQ-TARGET;temp:intralink-;e014;326;620pi ¼
X

jϵfAngiog

XB
b¼1

wd
i;j;b · dj;b; (14)

EQ-TARGET;temp:intralink-;e015;326;570pr ¼ Wrμr; (15)

where Wr and μr are the system matrix and the unknowns vec-
tor reduced at the vascular voxels. Clearly, the reduced problem
is object dependent and the reduction consists of eliminating the
groups of B columns in Wd relevant to each voxel j external to
the segmented vascular tree. Therefore, the proposed method
retrieves dynamic information from a standard linear algebraic
problem, which can be solved by a reconstruction algorithm.
Once the vector of the unknowns is reconstructed, the TICs
of the voxels could be obtained as a weighted sum of the
basis functions.

2.2 Classification of Arteries and Veins

Voxel-wise classification was based on the arterial area under
the curve (AUCA

i ), computed as the integral of the j’th voxel
TICjðtÞ up to the believed end of arterial phase TA

EQ-TARGET;temp:intralink-;e016;326;371AUCA
j ¼

Z
TA

0

TICjðtÞdt; (16)

and normalized by the AUCi over the whole acquisition time T.
In fact, it comes from experimental evaluation that arterial

TICs have an AUC in the first half of the curve much greater
than that in the second half on the curve, while the venous
TICs show a smaller AUC in the first half of the curve.
Therefore the partial arterial AUC was next normalized by
the entire AUC of the j’th voxel

EQ-TARGET;temp:intralink-;e017;326;251AUCj ¼
Z

T

0

TICjðtÞdt; (17)

and compared with an arterial threshold ThA with 0 < ThA < 1,
to be exceeded for arterial classification:

EQ-TARGET;temp:intralink-;e018;326;186

AUCA
j

AUCj
≥ ThA → Artery else → Vein: (18)

Clearly, both TA and ThA are the classification parameters to be
adjusted according to the specific contrast infusion protocol, or
even individually by some supervised (e.g., pointing a known
artery) or unsupervised (e.g., automatic detection of a main
artery) criterion. Also, fixing a further venous threshold
might be useful, with 0 < ThV < ThA < 1, where the veins
are classified below ThV while the values between the two
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thresholds should highlight uncertain arteriography segments
such as AVMs. In the present proof of concept, given the simple
simulations performed, TA was fixed at T∕2 while the optimal
value ThA was experimentally evaluated.

3 Simulation Protocol
In order to test the behavior of the ART 3.5D algorithm, a vessel
tree was simulated including the dynamic contrast flow. A set of
CBCT projections was computed on it to blindly compute the
TICs by ART 3.5D and next perform the artery/vein classifica-
tion to be compared with the generated ground truth. The vessel
tree, represented in Fig. 3, is composed of seven segments, two
of them being shunted. The absence of a capillary phase, though
not physiologic, made the separation of arteries and veins more
critical, hence this simplified anatomy was considered as suit-
able to challenge the classification rule. The diameter of the
vessels is 0.41 mm, the whole image dimension in voxels is
20 × 20 × 20, and the dimension of the isotropic voxels is
1 mm3. The intensity curve for each voxel j was simulated
as a sigmoidal curve of intensity over time (μj):

EQ-TARGET;temp:intralink-;e019;326;752μjðtÞ ¼
1

1þ e−cðt−tfÞ
; (19)

where c is the parameter slope and tf is the inflection point in
time. The sigmoid curve was selected among other shapes ana-
lyzing arteriography images. In addition, arteriography images
were studied for the choice of a range of reasonable slope values
for the sigmoids. The methodology used for the slope value
selection is described in Sec. 3.1. For each simulation, the
root mean square error (RMSE) was evaluated on the recon-
structed TIC for each voxel (TICj), with respect to the TICs
of the simulated dynamic vessel tree phantom (dTICj):

EQ-TARGET;temp:intralink-;e020;326;620RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
j¼1 ðTICj − dTICjÞ2

q
n

; (20)

where n is the number of TIC samples. In addition, contingency
tables were evaluated for both arteries and veins classification,
and sensitivity and specificity were computed. Moreover, the
dependency of the evaluation indices on the simulated contrast
transit dynamics was evaluated.

3.1 Sigmoid Slope Selection

We inspected an arteriography dataset acquired during the stan-
dard SEEG protocol at Ospedale Niguarda di Milano. The
patient had given informed consent and the dataset was anony-
mized. The arteriography dataset is composed of 21 frames,
acquired in 12 s after the injection of 40 cc of contrast medium
in 1 s. From the arteriography, 12 arterial voxels and 12 venous
voxels were manually selected (Fig. 4). For each of them, the
contrast transit curve over time was considered (Fig. 5) in
order to estimate the curve slope in the rising of contrast con-
centration, and the slope of the curve (s) was computed as the
ratio among the intensity difference among two subsequent
frames (ΔI) and the time elapsed among the two image samples
(Δt):

Fig. 3 Simulated vessel tree phantom. The arterial tree (lower part,
in red) is separated from the venous one (upper part, in blue).

Fig. 4 Selected (a) arterial and (b) venous voxels in arteriography images are marked with black dots.
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EQ-TARGET;temp:intralink-;e021;63;549s ¼ ΔI
Δt

: (21)

Since the dynamics in the vessel phantom was modeled with
sigmoidal dynamics, the slope values were interpreted as the
derivative of the sigmoidal curve (μj) at the inflection point
tf, namely

EQ-TARGET;temp:intralink-;e022;63;472s ¼ d
dt

μjtf ¼
c
4
: (22)

Therefore, the varying parameter c was computed as c ¼ 4 s.
Sigmoidal curves with values of c corresponding to the median,
25th and 75th quartiles, of arterial slope values were applied on
the arterial voxels of the vessel tree phantom, and in the same
way, in the venous voxels of the vessel tree phantom, sigmoidal
curves with values of c corresponding to the median, 25th and
75th quartiles, of venous slope values were set. Table 2 summa-
rizes all conditions for the experimental simulations.

3.2 Basis Functions Selection

Several basis functions sets have been taken into account includ-
ing step-shaped, triangular, and logistic basis functions. The
step-shaped basis functions proved to be the most suitable,
due to their relative squareness. The number of basis functions
needed to model a time profile along 12 s, which is the acquis-
ition time, was evaluated between 10 and 20. Moreover, the pos-
sibility of fitting real arterial and venous TICs with such basis
functions has been evaluated on the arteriography data, leading
to the conclusion that the reduction in accuracy was small
enough (RMSE is 0.012) to justify and rationalize the great ben-
efit gained in reducing the dimensionality of the problem.

4 Experimental Protocol
The ART 3.5 algorithm was also applied to a clinical dataset in
order to verify the correct functioning on a real CTA. The dataset
was acquired at Ospedale Niguarda di Milano, following the
CBCT standard acquisition protocol of the O-ARM4. The patient
had given informed consent and the dataset was anonymized.
Since the dimensionalities of a real CTA dataset introduce a
very high-computational time and large memory occupation,
the resolution of the dataset was reduced to a factor of 6. The
number of voxels has been reduced from 192 × 512 × 512 to
32 × 85 × 85, while the dimensions of a voxel, originally
0.415 × 0.415 × 0.833 mm3, became 2.5 × 2.5 × 5 mm3. The
obtained level of resolution limits the reconstruction to the largest
arteries and veins, allowing a proof of concept on real clinical
data, without introducing a far too high-computational complex-
ity. In order to evaluate the outcome of the ART 3.5D algorithm,
arteriography images have been used as reference and ground
truth. In fact, in such bidimensional images, the temporal evolu-
tion of the contrast medium in vessels from one frame to another
is clearly distinguishable, allowing the identification of frames
belonging to arterial and venous phases. For both the arterial
and venous frames, a projection along the sagittal axis comprising
all the arterial frames and another one comprising all venous
frames have been produced, obtaining a arterial and venous
bidimensional segmentation of arterial and venous pixels on
the frontal plane. The arterial and venous reconstructions from
the ART 3.5D underwent the same process, meaning that a maxi-
mum intensity projection has been performed on the arterial and
venous volumes along the sagittal plane. Subsequently, arteriog-
raphy-based projections and reconstruction-based projections
have been qualitatively compared, for a proof of concept. No sta-
tistics on arteries and veins classification performance has been
performed due to the lack of other clinical datasets, which would
have guaranteed a sufficient number for statistical evaluation.

5 Results
The results obtained performing simulation with the selected
slope values are shown below. The RMSE results are shown
in Table 3. The RMSE slightly increased with increasing
slope values, though displaying low values in all simulation
setups. Moreover, the trend of RMSE error over the algorithm
iterations was inspected for gaining insight on the algorithm
convergence. In this simple simulation context, the first two

Table 2 Arterial and venous slope values imposed in different
setups.

Setups Arterial slope Venous slope

Setup 1 25th q ¼ 0.2265 25th q ¼ 0.1167

Setup 2 Median ¼ 0.3006 Median ¼ 0.1331

Setup 3 75th q ¼ 0.3157 75th q ¼ 0.2114
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Fig. 5 TIC of (a) arterial (red) and (b) venous (blue) voxels, for voxels selected as shown in Fig. 4.
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iterations are actually the most important ones in the process,
resulting in the 95% of the reduction in RMSE error.

The contingency tables for the arteries classification are
shown in Table 4. The correct classification of arteries slightly
increases with increasing slope values. The contingency tables
for veins classification are shown in Table 5. The correct clas-
sification of veins was slightly better in simulation setups 1 and
2, and the veins true negative slightly increases with increasing
slope values.

The sensitivity, specificity, and accuracy values for arteries
and veins classification in all the simulation setups are reported
in Tables 6–8, respectively.

Additionally, the arteriography-based and reconstruction-
based arterial and venous segmentations on the frontal plane
are shown, respectively, in Figs. 6 and 7. The arterial and venous
trees’ shapes obtained with the ART 3.5D reconstruction and
segmentation are similar to the ones obtained from the arteriog-
raphy data, though with strong limitations in resolution, intro-
duced to make the computation feasible. Therefore, we consider
this result as a proof of concept for the functioning of ART 3.5D
on real CTA data, aware that several optimizations are needed to
make it suitable for precise and reliable arteries and veins
segmentation.

6 Discussion and Future Work
In this paper, a classification technique of arteries and veins is
presented, which exploits CE-CBCT data with no need for extra
scans, instrumentation, or contrast delivery. The ART 3.5D pro-
cedure is a postprocessing of the standard angiography, which
further exploits the projection data taking into account the con-
trast dynamics, which had been overlooked in the standard
arteriography computation. The algebraic problem solved by
ART 3.5D appears to be well posed as to the proportion of pro-
jection data and the unknowns of voxel-wise description of con-
trast dynamics, thanks to TICs simplified by a basis function
model and the reduction to the sole voxels included in the

Table 3 RMSE among reconstructed and simulated profiles in the
three experimental setups.

Setups RMSE

Setup 1 9.2177 × 10−4

Setup 2 9.3728 × 10−4

Setup 3 9.7461 × 10−4

Table 4 True positive, false positive, true negative, and false nega-
tive values for arteries classification are shown for each simulation
setup.

Arteries classification Simulated

Setup 1 (%) P N

P 97.78 0.20

N 2.22 99.80

Setup 2 P 98.85 0.19

N 1.15 99.81

Setup 3 P 99.99 0.23

N 0.01 99.77

Table 5 True positive, false positive, true negative, and false nega-
tive values for veins classification are shown for each simulation
setup.

Veins classification Simulated

Setup 1 (%) P N

P 92.63 0.03

N 7.37 99.97

Setup 2 P 93.18 0.01

N 6.82 99.99

Setup 3 P 92.27 0.01

N 7.73 99.99

Table 6 Sensitivity values for arteries and veins classification for
each simulation setup reported as a percentage of all the classified
voxels.

Sensitivity (%) Arteries Veins

Setup 1 99.79 99.97

Setup 2 99.81 99.99

Setup 3 99.77 1

Table 7 Specificity values for arteries and veins classification for
each simulation setup reported as a percentage of all the classified
voxels.

Specificity (%) Arteries Veins

Setup 1 97.82 93.13

Setup 2 98.86 93.62

Setup 3 1 92.83

Table 8 Accuracy values for arteries and veins classification for each
simulation setup reported as a percentage of all the classified voxels.

Accuracy (%) Arteries Veins

Setup 1 98.79 96.30

Setup 2 99.33 96.58

Setup 3 99.89 96.14
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prior angiographic segmentation. Voxel’s TICs were recon-
structed exploiting the implicit and usually overlooked dynamic
information contained in the CBCT acquired data due to the
transit of the contrast bolus. Though limited to theoretical analy-
ses and digital simulations, the present work was able to dem-
onstrate the feasibility of the proposed principles. An iterative
algebraic technique, namely the ART 3.5D algorithm, was
exploited for the TICs reconstruction. Once the TICs were
reconstructed, the voxels were classified as artery or vein
depending on the distribution of the AUC in time.

The reconstructed TICs presented low RMSE values, with a
regularity sufficient for the next classification. The classification
was evaluated computing the percentage of correctly classified
voxels and incorrectly classified voxels, obtained from the com-
parison among the computed classification and the simulation
a priori information. The classification showed good results,
up to more than 90% of correctly classified arteries and veins.

This outcome, yet limited to highly simplified angiographic sim-
ulations, is promising as to feasibility and deserves some discus-
sion in the perspective of real data analyses. In addition, the
processing of a real CTA dataset lowered in resolution was intro-
duced, leading to a qualitative proof of concept of the suitability
of the ART 3.5D algorithm for clinical data. In the latter, includ-
ing hundreds of vascular branches, a higher classification error
has to be expected. Nonetheless, in future developments, several
improvements can be exploited, which were not introduced so far:

• Time regularization: it was limited here to a coarse sep-
aration of TICs into time-shifted basis functions, but no
constraint relevant to wash-in sequence was imposed
and also no insertion or temporal smoothing within the
iteration cycles was attempted.

• Spatial continuity: classification after the reconstruction
of TICs was performed on a voxel-wise basis. However,

Fig. 6 (a) Arterial and (b) venous trees obtained from arteriography-based projection along the sagittal
axis.

Fig. 7 (a) Arterial and (b) venous trees obtained from reconstruction-based projection along the sagittal
axis.
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region growing techniques could easily get rid of isolated
misclassified voxels on the hypothesis of the continuity of
vessels.

A further element in favor of reliable classifications on real
datasets is represented by the wide temporal gap shown by the
capillary phase of contrast transit, which is a facilitating feature
not included in the present simulations. The contrast medium is
rapidly washed in through the arteries, next it fades expanding in
the huge network of unresolved capillaries, and next reappears
in veins for the final rapid wash-out. This is easily seen by
observing the sequence of projections through time and not
yet exploited in our algorithm. In conclusion, the ART 3.5D
algorithm introduces the possibility to account for dynamics
from CE-CBCT acquisition, without requiring additional x-ray
exposure to the patient or any lowering in spatial resolution.
This allows for arteries and veins classification and labeling
within the vascular tree, which is important in many clinical
applications involving vascular disease or malformations or
intervention planning.

Further analysis should also be devoted to more sophisticated
classifications drawn from the TICs, beyond a sharp separation
of arteries and veins. Indeed, the availability of the whole time
course of contrast wash-in wash-out is foreseen as a potential
tool to also classify anomalous compartments as AVMs and
also provide functional indices relevant to possible insufficien-
cies of both the arterial and venous compartments. Further work
would be needed in order to make the algorithm suitable for real
images processing. In fact, currently, the computational cost of
the algorithm makes unsuitable the processing of high-resolu-
tion clinical datasets. In particular, computational time limits
might be brightly solved adopting an appropriate computational
framework, relying on a more powerful hardware and exploiting
parallel computation techniques. So far, however, it was noticed
that the number of needed ART iterations was limited to two
iterations. The thought that this might be due to the simple sim-
ulation context, also suggests that ART is likely to converge
quickly to a solution within this type of problem framework.

Also, the ART problem dimension is lower than that of a
standard 3-D static reconstruction, which is normally afforded
by suitable software engineering running on standard imaging
workstations. In further algorithm refinements, a major, though
affordable, problem is foreseen in creating and loading the
object-dependent dynamic system matrix, reduced upon the spe-
cific angiogram to be classified.
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