
JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 1

Floorplanning Automation for
Partial-Reconfigurable FPGAs via Feasible

Placements Generation
Marco Rabozzi, Student Member, IEEE, Gianluca C. Durelli, Student Member, IEEE,

Antonio Miele, Member, IEEE, John Lillis, Member, IEEE, and Marco D. Santambrogio, Senior Member, IEEE

Abstract—When dealing with Partially-Reconfigurable designs
on Field Programmable Gate Arrays (FPGAs), floorplanning rep-
resents a critical step that highly impacts system’s performance
and reconfiguration overhead. However, current vendor design
tools still require the floorplan to be manually defined by the
designer. Within this work we provide a novel floorplanning
automation framework, integrated in the Xilinx tool-chain, which
is based on an explicit enumeration of the possible placements of
each region. Moreover, we propose a genetic algorithm, enhanced
with a local search strategy, to automate the floorplanning activity
on the defined direct problem representation. The proposed
approach has been experimentally evaluated with a synthetic
benchmark suite and real case studies. We compared the designed
solution against both state-of-the-art algorithms and alternative
engines based on the same direct problem representation. Exper-
imental results demonstrated the effectiveness of the proposed
direct problem representation and the superiority of the defined
genetic algorithm engine with respect to the other approaches in
terms of exploration time and identified solution.

Index Terms—Field Programmable Gate Arrays, Floorplan-
ning, Partial Reconfiguration, Mixed Integer Linear Program-
ming, Genetic Algorithm, Local Search, Simulated Annealing.

I. INTRODUCTION

Field Programmable Gate Array (FPGA) devices are nowa-
days widely employed in commercial and industrial appliances
in many scenarios (e.g. telecommunication, automotive, high
performance computing, video and image processing), due
to their reduced costs, good computational power, and high
flexibility since they can be reconfigured in order to change
their functionality. Moreover, Partial Reconfiguration (PR) [1]
has received a considerable attention in the recent years since it
even more enhances such flexibility, by enabling the possibility
to dynamically change only part of the modules at runtime
while the rest of the system keeps working. Indeed, PR
offers new opportunities such as the possibility to execute at
different times more functionalities than the ones physically
placeable on the device or the possibility to update or vary
their implementations. In order to enable PR two necessary
conditions must hold: 1) the Field Programmable Gate Array
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(FPGA) device has to physically support the change of only a
part of the configuration at runtime, and 2) the companion
design tools have to support the implementation of such
reconfigurable systems. In this scenario, Xilinx [2] is the
vendor presenting the most mature solution.

The role of floorplanning [3] in PR-based system design
is even more prominent than to the standard FPGA design
flow. In fact, while in the latter, this activity is mainly of
interest for expert designers aiming at achieving advanced
performance optimization, in the former the implementation of
a partially reconfigurable system forces to define the specific
regions on the device fabric that will host the interchangeable
functionalities. Therefore, floorplanning directly affects the
feasibility and the performance of the final solution. However,
it is a quite complex activity since the area constraints for
the reconfigurable regions have to meet specific placement
requirements (reported in [1]), while covering a minimum
amount of configurable resources that are needed by the mod-
ules reconfigured over time in each of the regions. Neverthe-
less the internal architecture of FPGAs is becoming more and
more advanced, exacerbating the floorplanning complexity.
In fact, the homogeneous grid of Configurable Logic Blocks
(CLBs) is alternated, most of the time in an irregular way, with
columns of dedicated elements such as Block RAMs (BRAMs)
and Digital Signal Processors (DSPs).

Commercial tool-chains still support floorplanning through
visual instruments, such as Xilinx Vivado [2] (which inte-
grates the previous PlanAhead tool). However, the designer
still has to manually define the shape and the position of
the reconfigurable regions, since the tool provides a limited
automation on the regions definition that generally leads to
unfeasible solutions. Nevertheless, also other design flows for
Xilinx FPGA devices proposed by the academia (e.g., [4], [5])
suffer from the same lack. On the other hand, several academic
solutions have been presented in literature to automate floor-
planning ([3], [6]–[12]). However, only few ones ([6]–[8]) take
into account the requirements for PR, and, at the same time,
accurately consider an arbitrary distribution of heterogeneous
resources within the device. Indeed, most of the algorithms
consider only one of the two aspects, i.e. the PR requirements
(e.g. [9], [10]) or the resource distribution (e.g. [3], [11]–[13]).
Finally, as it will be shown in this paper, such comprehensive
approaches generate suboptimal solutions. Another relevant
consideration that can be drawn on most of such automation
solutions is the fact that they are actually unconnected from
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the real design flow; in fact, only few of these engines ([4],
[5], [14], [15]) are tested on real circuits and synthesize their
final outcome on a real board to check for feasibility.

In this paper we present a novel floorplanning automation
framework fully integrated with the Xilinx design flow. The
framework exploits a direct representation of the problem
based on the enumeration of the feasible placements that is
able to abstract the computational complexity of floorplan-
ning exploration while taking into account all the relevant
constraints for PR on recent devices and metrics such as area
consumption and aspect ratio. We show that, differently from
the classical problem for VLSI design, enumerating a suitable
subset of the feasible placements for each reconfigurable re-
gion is a viable approach and can be also efficiently automated
by means of classical optimization algorithms. In a previous
work [16] we proposed a preliminary version of the framework
where the design space exploration was automated by means
of a Mixed-Integer Linear Programming (MILP) formulation.
We here propose a more complete and mature framework fea-
turing a new automation engine providing higher performance.
In conclusion, we summarize our contributions as follow:

• We accurately model all the constraints in the current PR
guidelines [1].

• We propose a direct formulation of the floorplanning
problem based on a conflict graph of the feasible regions
placements described in terms of the actual coordinates
on the fabric grid.

• We propose a genetic algorithm extended with a local
search strategy exploiting the defined problem represen-
tation. The algorithm is able to speed up the identification
of near-optimal solutions in a limited elaboration time.

• Finally, we experimentally show the effectiveness of the
proposed approach by comparing against various state-
of-the-art solutions and alternative engines exploiting the
same problem representation on both synthetic bench-
marks and real case studies.

The remainder of the paper is organized as follows. Sec-
tion II discusses the related work in the area, while Section III
presents a formal description of the problem. Then, Section IV
shows the proposed design flow, whose details are discussed
in Sections V and VI in which the feasible placements
generation process and the floorplanning automation algorithm
are presented respectively. Finally, Section VII evaluates our
approach on different problem instances, and Section VIII
draws the conclusions. In addition, we report in Appendix A
a revisited presentation of the MILP formulation [16] that has
been used as a baseline for the experimental evaluations.

II. RELATED WORK

Several floorplanners for FPGAs have been proposed in
literature; however, most of them produce solutions that are
either not compliant with PR requirements and guidelines (e.g.
[11]–[13]), or only focus on a simplified device model, not
capable of representing modern FPGAs lacking a uniform
distribution of heterogeneous resources (e.g. [9], [10]).

One of the first algorithms that considers the heterogeneity
of FPGA resources has been presented in [3]. The algorithm

exploits simulated annealing over a slicing-tree representation,
and, subsequently, performs a compaction step to recover from
unfeasible solutions and to improve the shapes of the modules.
However, the resulting floorplan unlikely produces shapes that
meet the PR requirements. Furthermore, the approach assumes
the FPGA to have a homogeneous resource distribution, i.e.,
BRAM and DSP columns are homogeneously spaced within
the device fabric. Based on this assumption, the algorithm
divides the fabric grid in a set of homogeneous blocks having
the same size and containing the same amount of resources
for each resource type (DSP, BRAM and CLB). However,
this organization, which characterizes obsolete device families
(such as Xilinx Virtex-II and Spartan 3), does not hold for
the recent devices (e.g. Xilinx Virtex 6). Interesting aspects of
such formulation are the Irreducible Realization List (IRL) and
the dominance relation, that have been successfully borrowed
in our problem representation as described in Section V.

A similar approach considering a heterogeneous FPGA
device has been proposed in [13]; it consists in 1) a simulated
annealing algorithm exploring a sequence-pair representation
of the solution, and 2) a subsequent refinement of such solution
by means of a Min-Cost Max-Flow formulation which alters
the rectangular shapes of the reconfigurable regions. Due to
this second phase, the approach in general does not satisfy PR
requirements.

Another class of approaches ([9], [10]) introduces the time
domain in the problem by handling the definition of reconfig-
uration operations together with the design of the floorplan.
In [10] only logic blocks are taken into account while ignor-
ing other types of resources available in the FPGA device.
The work proposed in [9] considers both the partitioning of
modules into reconfigurable regions and their floorplanning.
During the partitioning phase, the algorithm assigns each
of the modules to a reconfigurable region to minimize the
wastage of resources over time. After partitioning, the resource
requirements of the regions are known and the algorithm
computes a floorplan by means of simulated annealing using
moves that preserve the PR constraints. Even though the
approach considers heterogeneous resources, similarly to [3]
it assumes their regular and uniform distribution.

Differently from [9], other approaches ([11], [12]), called
multi-layer floorplanners, analyze together the various circuit
configurations the system assumes in different instants of time.
Their aim is to identify a floorplan such that the common
modules used in all the configurations are placed at the same
position in all the circuit configurations. Such modules will
represent the static area of the device, while the rest of the
device is reconfigured as a whole. As a consequence, the
reconfigurable part does not follow the Xilinx PR flow. Never-
theless, in [12] the device is assumed to have a homogeneous
resource distribution as in [3].

A last class of floorplanners ([6], [7], [8]) considers both
the PR constraints and an accurate description of the het-
erogeneous resource distribution. The work proposed in [6]
stems from Parquet [17], the state-of-the-art fixed-outline
floorplanner for VLSI design, and presents a non-trivial adap-
tation of the methodology to deal with partially reconfigurable
FPGAs. The algorithm uses simulated annealing to perturb
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a floorplan representation that consists of a sequence pair
augmented with a vector characterizing the aspect-ratio of
the modules. Moreover, to increase the probability to detect
feasible floorplans, it implements smart moves to recover from
solutions in which the resource requirements are not satisfied.

The approach devised in [7] characterizes the FPGA device
in terms of minimal reconfigurable units [1] called tiles.
Each tile spans multiple configurable frames on the horizontal
direction and contains a specific type and number of resources.
Thus, the resource requirements of the reconfigurable regions
are translated in terms of tile requirements and a technique
called Columnar Kernel Tessellation is applied to search for
floorplans that minimize the overall estimated bitstream size. A
post processing step moves the obtained areas on the vertical
direction trying to locally improve the wire length without
affecting the occupation of resources.

Even though [6] and [7] give better results than [9] in terms
of wire length and area occupancy respectively, [8] shows
that the quality of their solutions can still be improved by
means of analytic methods at the cost of a longer execution
time. Specifically, [8] proposes two algorithms both based on
a compact MILP formulation. The first algorithm is meant to
locally improve the quality of an initial feasible solution with
a relatively small computational effort. Instead, the second
algorithm is able, in principle, to explore the full solution
space and to find provably optimal solutions. Unfortunately
both the algorithms require, to some extent, an initial feasible
floorplan to achieve good final solutions. In our previous
publication [16] we have demonstrated that solutions achieved
by the approaches proposed in [8] (and consequently in [7] and
[6]) can be further optimized without additional time penalties.

A final aspect to be considered is the experimental val-
idation of the proposed solutions. Actually, only in few
approaches ([4], [5], [14], [15]) the produced results are
synthesized on the target device to check their feasibility
and the achieved performance in terms of maximum clock
frequency. In particular, in [14] an in-depth analysis of the
effects of modules aspect ratio on the maximum achievable
clock frequency is performed, while no automation strategies
are presented. In [15] a similar analysis is performed by
concluding that squared aspect ratios are preferable, and a
very simple semi-automated floorplanner for pipeline designs
based on a single chain of components is proposed. In [4], the
floorplanning problem is tackled from a different perspective:
the system is first synthesized without any constraint, and,
then, an automated engine tries to identify a suitable set of
placement constraints around the area used for placing and
routing each module; unfortunately the approach is tested with
a single reconfigurable region and it is unlikely to work with a
larger number of regions. Finally, in [5] a simulated annealing
is directly integrated with the synthesis tool to implement each
explored solution; even though such a strategy presents a huge
cost in terms of elaboration time.

Table I recaps the characteristics of the existing approaches
showing the supported features. It is worth noting that the
most efficient approach has been proposed in [16]; in fact, it
outperforms (possibly in a indirect way) most of the relevant
previous solutions supporting PR (i.e. [6]–[9], [13]). However,

TABLE I
COMPARATIVE ANALYSIS OF PAST APPROACHES

Approach FPGA Reconfig. PR Experimental Exp.
Model* aware support comparison** verified

Wong [3] HO [17]
Feng [13] HE
Yuh [10] CLB X
Montone [9] HO X X
Singhal [11] CLB X
Banerjee [12] HO X
Bolchini [6] HE X X [9], [13]
Vipin [7] HE X X [9]
Rabozzi [8] HE X X [6], [7]
Lamprecht [14] HE X
Neely [15] CLB X X X
Beckhoff [4] HE X X X
Yousuf [5] HE X X X
Rabozzi [16] HE X X [6], [8]
PA HE X X [16] X

(*) Device models with a homogeneous resource distribution (HO), heterogeneous
one (HE) and considering only configurable logic blocks (CLB)

(**) The cell lists the approaches that have been tested and outperformed by the
one of the current line

the weakness it presents is the lack of an experimental vali-
dation of the achieved solutions while not all the current PR
constraints are taken into account. In this paper, we aim at
proposing a novel floorplanning automation framework that,
starting from the preliminary idea presented in [16], supports
the peculiarities of modern FPGA devices and PR design
flow, and features an even more efficient automation engine
in terms of quality of the achieved solutions and elaboration
time. Moreover, we also present an experimental validation of
the approach by implementing real designs on a FPGA device.

III. FLOORPLANNING PROBLEM DESCRIPTION

This section provides some relevant background on the
floorplanning problem, in particular focusing on the Xilinx
FPGA devices and the design rules of the related PR flow.

As shown in Figure 1a, the reconfigurable fabric of an
FPGA device is organized in a set of columns of resources of
various types, that is T = {CLB,BRAM,DSP}. The grid
is also divided in quadrants, called clock regions according
to the structure of the clock tree and the organization of the
configuration memory. Based on the memory organization, the
basic reconfiguration portion of the device grid, that we call
tile, spans one clock region height and one resource width.
Each tile contains a single type of resource depending on the
position of the tile, and the amount of units depends on the
type of resource. Thus, as in [7], we consider a more abstract
model of the FPGA organization in terms of a grid of tiles.
Finally, we also define a coordinate system on the grid of tiles,
starting from the bottom-left corner. We denote with W and
H the maximum values on the X and Y axis respectively.

According to the PR design guidelines, as shown in Fig-
ure 1b, the reconfigurable system is specified in terms of a
structural description of interconnected N top components
called reconfigurable regions1. Each region implements a
partially-reconfigurable unit in which it will be possible to
load in a mutually-exclusive fashion a set of modules im-
plementing different functionalities. Thus, the reconfigurable

1When clear from the context, we also refer to them simply as regions.
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region n presents resource requirements that depends on the
hosted modules; for each resource type t we denote the
required amount as rn,t. Moreover, the region is connected
with the others and with the static part of the design (another
component or set of components not featuring reconfiguration
capabilities) by means of a set of interconnection buses, each
one characterized by a width b in terms of number of wires. Do
note that at floorplanning stage, positioning of the connections
of the wires among the region boundaries is not handled;
therefore, a center-to-center interconnection model is here
adopted and the overall wire length is estimated using the
classical half-perimeter wire length (HPWL) formula [12].

The goal of the floorplanning is to define a placement for
each of the reconfigurable regions, in terms of rectangular
shape and position on the FPGA resource grid. To this purpose,
on the basis of the defined FPGA model, we denote with P
the set of all possible placements that may be defined for the
floorplanning of a single reconfigurable region:

P = {(x, y, w, h) | x, y, w, h ∈ N,
x+ w ≤W, y + h ≤ H} (1)

where x and y represent the coordinates of the bottom-left
corner of the placement, while w and h define its width and
height respectively. Thus, the specific placement p can be char-
acterized in terms of the available resource capacity, denoted
as cp,t (for each resource type t), depending on the specific
position and shape. It is worth noting that in some devices (e.g.
the Zynq device) specific placements are forbidden since they
overlap with hard processors, static logic or I/O blocks. We
represent such placements with the subset S ⊂ P , that will be
discarded during the floorplanning exploration. For a formal
description of the floorplanning requirements it is convenient
to define a relation ⊥ such that for p1, p2 ∈ P : p1 ⊥ p2 if and
only if the two placements overlap on at least a tile. The non-
overlapping relation 6⊥ is simply defined as the complement
of ⊥: 6⊥= P × P \ ⊥.

To be feasible, a floorplan must assign a placement pn for
each region n and satisfy a set of PR requirements:
REQ1: each assigned placement must contain at least the

required resources for the corresponding region:

∀n ∈ N, t ∈ T : cpn,t ≥ rn,t (2)

REQ2: each assigned placement must not be forbidden:

∀n ∈ N : pn 6∈ S (3)

REQ3: the left and right boundaries of a placement pn must
be aligned to specific coordinates that prevent splitting of
interconnect resources [1] (V L and V R enumerate valid
left and right coordinates, respectively):

∀pn = (x, y, w, h) | n ∈ N : x ∈ V L∧x+w ∈ V R (4)

REQ4: CLB resources at both sides of the center clock
column must lie in the static part of the design, an
assigned placement can cross the center column but such
resources are not available for the corresponding region:

∀t ∈ T : c(xclk−1,0,2,H),t = 0 (5)

REQ5: placements assigned to two different regions cannot
overlap:

∀pn1, pn2 | n1, n2 ∈ N ∧ n1 6= n2 : pn1 6⊥ pn2 (6)

This list of constraints can be partitioned in two groups:
REQ1-REQ4 are specifically related to the placement pn for
a single region n, while REQ5 rules the relative positions
between different regions. Moreover, the first set can be
summarized in a single definition by introducing a new set
Pn, which represents all the feasible placements on the device
for a reconfigurable region n.

In conclusion, the floorplanning problem can be stated as
follows: Given the sets Pn of feasible placements, a floorplan
is a function f that assigns for each region n ∈ N a
placement p ∈ Pn such that there is no overlapping among
the placements. More formally:

f : n ∈ N → p ∈ Pn

f(n1) 6⊥ f(n2) ∀n1, n2 ∈ N : n1 6= n2
(7)

IV. PROPOSED FLOORPLANNING FRAMEWORK

The structure of the proposed floorplanning automation
framework and its integration in the Xilinx design flow is
depicted in Figure 2. The design flow implemented in Xilinx
Vivado consists in three main automated steps:

1) Synthesis, which takes the input Hardware Description
Language (HDL) structural specification of the system
and translates it in an intermediate netlist,

2) Implementation, which performs the place and route of
the netlist on the selected FPGA device, and,

3) Bitstream Generation, which generates the final partial
and complete configuration files.

Moreover, after each phase, a set of manual steps can be
performed to define specific aspects and set parameters (such
as the selection of the I/O pins or the floorplanning of the
modules), while the obtained circuit can be analyzed by means
of utility tools (for instance to estimate the power consumption
or the timing of the netlist).

In this scenario, the PR design flow is an enhancement of the
standard flow able to handle the fact that several modules can
be implemented in the same reconfigurable region. During the
three phases, partial specifications, related to the modules and
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this second kind of devices (e.g., Virtex-4 and Virtex-5
families).

According to the PR flow, the reconfigurable system
S is modeled in terms of reconfigurable modules and
reconfigurable areas. A reconfigurable module cj is a tech-
nologically mapped netlist, containing a set of functional
units and characterized by a vector of required resources
reqj. A reconfigurable area ai is a region on the device
grid that will host a specific set of reconfigurable modules,
c1, · · · , cm, in different time instants, in a mutually exclu-
sive fashion. Since the mapping and scheduling activities
have already been performed (for instance with the method
proposed in [13]), the set of reconfigurable modules of
each reconfigurable area is known a-priori. The system
includes also a static area containing a set of functional
units loaded at boot time and never reconfigured. All areas
are interconnected to each others with ad-hoc communi-
cation links (called proxy logic), with a specified width,
and are automatically introduced by the PR synthesis tool;
moreover, each area may be connected with a set of
IOBs for the communication with external devices. Being
the FPGA mounted on an existing board, each IOB is
already mapped on a specific position in the device grid
corresponding to the required device pin.

The definition of a floorplan for a reconfigurable system
according to the PR flow imposes the following constraints
on the shape and the position of the reconfigurable areas.
Each reconfigurable area ai is shaped as a rectangle,
identified by coordinates [(xBLi , yBLi), (xTRi , yTRi)], being
the Bottom-Left corner and the Top-Right corner, respec-
tively. According to the position and the size, each area
ai contains a specific vector of resources named resi. To
obtain a physically feasible implementation, the following
constraints must be satisfied:

1) each area ai must be inside the device grid;
2) different areas must not overlap;
3) each area ai must contain an amount of resources

resi (except for IOBs) sufficient to satisfy the re-
quests reqj to implement each one of the hosted
modules cj,

4) the yBLi and yTRi coordinates of the area must be
multiple of the height of the frame row, for partial
reconfiguration;

5) coordinates xBLi and xTRi must fulfill specific posi-
tioning constraints, for the correct placement of proxy
logic.

These rules correspond to the formal formulas below
(same ordering):

(1) 8ai 2 S, 0  xBLi < xTRi < Wdev ^ 0  yBLi < yTRi < Hdev

(2) 8ai, aj 2 S, (xTRi < xBLj _ xTRj < xBLi) ^
(yTRi < yBLj _ yTRj < yBLi)

(3) 8ai 2 S, 8cj placed in ai, 8k 2 R reqj[k]  resi[k]

(4) 8ai 2 S, yBLi = ⌘ · Hfr ^ yTRi = # · Hfr � 1

where ⌘, # 2 N, ⌘, # 2 [0, Nfr rows], ⌘ < #

(5) 8ai 2 S, xBLi = � · 2 ^ xTRi = � · 2� 1

where �, � 2 N, �, � 2 [0, Wdev/2], � < �.

The PR flow does not impose any constraint to the static
area that can be implemented freely on the parts of the de-
vice not occupied by the reconfigurable areas. However, in
order to easily handle and optimize interconnection issues,
we manage the various parts of the static area similarly
to the reconfigurable ones. Nevertheless, if necessary, the
designer can manually specify one or more rectangular
regions where to place the various functional units of the
static area; such regions will be considered as unavailable
space during the floorplanning activity.

Given the above-presented models, the considered floor-
planning problem is formulated as the identification of an
optimal shape and position of all reconfigurable and static
areas of the system, fulfilling the resource requirements
and the area definition constraints, and minimizing the
interconnections length both between reconfigurable areas
and with respect to the IOBs, measured by means of the
commonly adopted Manhattan distance metric.
Note that, in the following, we will use the term areas to
refer to both static and reconfigurable ones.

IV. FLOORPLAN REPRESENTATION

The adopted floorplan representation is composed of the
classical sequence pair ([15]) with an additional vector
containing the height of each area. The sequence pair
represents two permutations of the N areas contained in
the reconfigurable system. This representation captures ge-
ometric relations between each pair of areas; in particular,
because overlapping must not occur, two areas constrain
each other in either the vertical or the horizontal direction
as follows:

(h..., ai, ..., aj, ...i, h..., ai, ..., aj, ...i)) ai at the left of aj(6)
(h..., ai, ..., aj, ...i, h..., aj, ..., ai, ...i)) ai above aj(7)

Vector Ha = {ha1 , · · · , haN} specifies the heights of the
areas in terms of frame rows; each height is included
in the range [1, Nfr rows]. Classically, the shape of soft
modules is specified by an aspect ratio parameter (as in
[15]); however, due to the coarse grain granularity of the
heights the areas can assume, this choice is not suitable.
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this second kind of devices (e.g., Virtex-4 and Virtex-5
families).

According to the PR flow, the reconfigurable system
S is modeled in terms of reconfigurable modules and
reconfigurable areas. A reconfigurable module cj is a tech-
nologically mapped netlist, containing a set of functional
units and characterized by a vector of required resources
reqj. A reconfigurable area ai is a region on the device
grid that will host a specific set of reconfigurable modules,
c1, · · · , cm, in different time instants, in a mutually exclu-
sive fashion. Since the mapping and scheduling activities
have already been performed (for instance with the method
proposed in [13]), the set of reconfigurable modules of
each reconfigurable area is known a-priori. The system
includes also a static area containing a set of functional
units loaded at boot time and never reconfigured. All areas
are interconnected to each others with ad-hoc communi-
cation links (called proxy logic), with a specified width,
and are automatically introduced by the PR synthesis tool;
moreover, each area may be connected with a set of
IOBs for the communication with external devices. Being
the FPGA mounted on an existing board, each IOB is
already mapped on a specific position in the device grid
corresponding to the required device pin.

The definition of a floorplan for a reconfigurable system
according to the PR flow imposes the following constraints
on the shape and the position of the reconfigurable areas.
Each reconfigurable area ai is shaped as a rectangle,
identified by coordinates [(xBLi , yBLi), (xTRi , yTRi)], being
the Bottom-Left corner and the Top-Right corner, respec-
tively. According to the position and the size, each area
ai contains a specific vector of resources named resi. To
obtain a physically feasible implementation, the following
constraints must be satisfied:

1) each area ai must be inside the device grid;
2) different areas must not overlap;
3) each area ai must contain an amount of resources

resi (except for IOBs) sufficient to satisfy the re-
quests reqj to implement each one of the hosted
modules cj,

4) the yBLi and yTRi coordinates of the area must be
multiple of the height of the frame row, for partial
reconfiguration;

5) coordinates xBLi and xTRi must fulfill specific posi-
tioning constraints, for the correct placement of proxy
logic.

These rules correspond to the formal formulas below
(same ordering):

(1) 8ai 2 S, 0  xBLi < xTRi < Wdev ^ 0  yBLi < yTRi < Hdev

(2) 8ai, aj 2 S, (xTRi < xBLj _ xTRj < xBLi) ^
(yTRi < yBLj _ yTRj < yBLi)

(3) 8ai 2 S, 8cj placed in ai, 8k 2 R reqj[k]  resi[k]

(4) 8ai 2 S, yBLi = ⌘ · Hfr ^ yTRi = # · Hfr � 1

where ⌘, # 2 N, ⌘, # 2 [0, Nfr rows], ⌘ < #

(5) 8ai 2 S, xBLi = � · 2 ^ xTRi = � · 2� 1

where �, � 2 N, �, � 2 [0, Wdev/2], � < �.

The PR flow does not impose any constraint to the static
area that can be implemented freely on the parts of the de-
vice not occupied by the reconfigurable areas. However, in
order to easily handle and optimize interconnection issues,
we manage the various parts of the static area similarly
to the reconfigurable ones. Nevertheless, if necessary, the
designer can manually specify one or more rectangular
regions where to place the various functional units of the
static area; such regions will be considered as unavailable
space during the floorplanning activity.

Given the above-presented models, the considered floor-
planning problem is formulated as the identification of an
optimal shape and position of all reconfigurable and static
areas of the system, fulfilling the resource requirements
and the area definition constraints, and minimizing the
interconnections length both between reconfigurable areas
and with respect to the IOBs, measured by means of the
commonly adopted Manhattan distance metric.
Note that, in the following, we will use the term areas to
refer to both static and reconfigurable ones.

IV. FLOORPLAN REPRESENTATION

The adopted floorplan representation is composed of the
classical sequence pair ([15]) with an additional vector
containing the height of each area. The sequence pair
represents two permutations of the N areas contained in
the reconfigurable system. This representation captures ge-
ometric relations between each pair of areas; in particular,
because overlapping must not occur, two areas constrain
each other in either the vertical or the horizontal direction
as follows:

(h..., ai, ..., aj, ...i, h..., ai, ..., aj, ...i)) ai at the left of aj(6)
(h..., ai, ..., aj, ...i, h..., aj, ..., ai, ...i)) ai above aj(7)

Vector Ha = {ha1 , · · · , haN} specifies the heights of the
areas in terms of frame rows; each height is included
in the range [1, Nfr rows]. Classically, the shape of soft
modules is specified by an aspect ratio parameter (as in
[15]); however, due to the coarse grain granularity of the
heights the areas can assume, this choice is not suitable.
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the top level of the design, are used for the synthesis and the
implementation of sub-circuits and the subsequent generation
of partial bitstreams. Within this scenario, the floorplanning is
a manual activity executed before the implementation phase,
immediately after the definition of the reconfigurable regions
within the top level specification.

The proposed floorplanning automation framework replaces
the corresponding manual activity in the considered PR design
flow. The framework takes in input the HDL structural specifi-
cation of the system and translates it in an internal agile repre-
sentation based on a graph. Moreover, it exploits synthesis re-
ports to collect information on the resource requirements, that
will be annotated on the system internal representation. The
overall resource requirements of each reconfigurable region
are computed as the maximum requirements among the various
modules that will be hosted within the specific region. Finally,
the framework takes in input the description of the considered
FPGA device modeled as discussed in Section III. The output
of the framework is the set of rules describing the floorplan
solution, specified in the Xilinx constraint language to be
imported in Vivado in order to continue with the subsequent
implementation phase.

According to the formalization of the problem presented in
the requirements REQ1-REQ5, the floorplanning automation
framework is divided in two different phases:

1) Feasible placements generation, that consists in building
a conflict graph where nodes represent the union of the
Pn sets of possible feasible placements for each recon-
figurable region n (REQ1-REQ4), and edges represent
the overlapping among pairs of placements of different
regions (REQ5).

2) Floorplanning exploration, that selects a possible place-
ment in Pn for each reconfigurable region n such that
there is no overlap among placements (REQ5) and an
objective function specified by the designer is maximized.

We automated the two phases with different strategies ac-
cording to their peculiarity and computational complexity. In
particular, the first phase performs an exhaustive exploration
for the definition of the conflict graph, since, as shown in the
next section, the problem has a limited complexity. For the

second phase, characterized by a considerably larger design
space, the framework features an efficient exploration engine
powered by a genetic algorithm extended with a local search
strategy. As shown in the experimental session, this strategy
provides near-optimal solutions with a very limited execution
time. Nevertheless, as shown in Section VII, the framework
supports the integration of further automation strategies. The
two phases are discussed in more details in the following
sections.

V. FEASIBLE PLACEMENTS GENERATION

The first phase of the proposed framework is devoted
to the definition of an abstract model called conflict graph
that describes all the feasible placements for the various
reconfigurable regions and the possible conflicts among pairs
of placements. As shown in Figure 3, the conflict graph
contains a group of nodes for each reconfigurable region n
representing the overall enumeration of the feasible placements
Pn, computed by fulfilling requirements REQ1-REQ4. More-
over, edges are used to represent conflicts between pairs of
placements of two different regions, according to requirement
REQ5.

It is worth noting that in the classical floorplanning for
VLSI design it is commonly agreed that such a problem repre-
sentation, based on the direct specification of all the possible
region coordinates on the device grid, is extremely inefficient
for automated optimization due to the huge solution space it
defines. For this reason, past approaches have exploited various
indirect representations, such as slicing trees, sequence pairs
or other hierarchical tree-based representations [18]. At the
opposite, the PR guidelines cause a considerable decrease in
the number of feasible placements for a single reconfigurable
region, thus allowing to effectively exploit such a direct repre-
sentation of the placements. As an example, Figure 4 reports
the number of feasible placements generated for a single
reconfigurable region when varying its resource requirement
on a specific Xilinx XC7V585TFF6 device; the number of all
feasible placements under PR constraints (Pn) is two order of
magnitude smaller with respect to the number of all the pos-
sible placements that can be generated on the device without
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Fig. 4. Number of feasible placements for a single reconfigurable region.

constraints (namely No PR in the figure). It is worth noting
that only CLBs are considered as resource requirements, while
taking into account also other resource types would have even
more decreased the number of placements.

The number of placements to be explored for the floorplan-
ning can be even more reduced with respect to Pn, if we
consider that in most of the cases, from an optimization point
of view it is not efficient to define placements larger than the
minimal bounding boxes containing the required resources.
In fact, as discussed in [3] and [6], by using the minimal
bounding boxes it is possible to reduce resource utilization,
thus leaving space for additional functionalities and reducing
the reconfiguration time. For this reason, we define a new set
P irr
n containing the irreducible placements of a region n as:

P irr
n = {p ∈ Pn | @p2 ∈ Pn : p2 6= p ∧ p2 ≺ p} (8)

where ≺ represents a containment relation between two differ-
ent placements of the same region. More formally, given two
placements p1 = (x1, y1, w1, h1), p2 = (x2, y2, w2, h2) ∈ Pn,
we have p1 ≺ p2 if and only if x1 ≥ x2, y1 ≥ y2,
x1 + w1 ≤ x2 + w2 and y1 + h1 ≤ y2 + h2. As shown in
Figure 4, P irr

n allows to reduce the size of the conflict graph
of about another order of magnitude compared to Pn.

Even if P irr
n sets are well-suited for optimizing resource

occupation, we have experimentally noted that they may
produce suboptimal results in terms of global wire length
among various regions. For this reason, we have slightly
relaxed the definition of P irr

n to consider also placements that
are required to be minimal only with respect to the horizontal
direction. For a formal definition of this set of placements
we consider a weaker containment relation ≺w: given the two
above placements p1 and p2, we have p1 ≺w p2 if and only
if x1 = x2, y1 = y2, h1 = h2 and w1 ≤ w2. Thus the
corresponding width-reduced placements set for region n is
defined as:

Pw
n = {p ∈ Pn | @p2 ∈ Pn : p2 6= p ∧ p2 ≺w p} (9)

For the three defined sets the following relation holds:

P irr
n ⊆ Pw

n ⊆ Pn (10)

It is worth noting that the choice of reducing the placements
only on the horizontal direction is suggested from the structure

Algorithm 1 Width-reduced placements generation
1: for each n ∈ N do
2: Pw

n ← ∅
3: for each x ∈ V L do
4: for y ← 0 to H − 1 do
5: for h← 1 to H − y do
6: w ← searchMinimalWidth(x, y, h, n)
7: v ← validAspectRatio(x, y, h, w)
8: if w > 0 ∧ v = true then
9: Pw

n ← Pw
n ∪ (x, y, w, h)

of current devices. Usually H is much more coarse-grained
than W ; as an example a Xilinx Virtex-5 XC5VLX110T is
described using 8 rows and 62 columns of tiles (W = 62
and H = 8) [8]. On average, with respect to different CLB
resource requirements, this relaxed strategy leads to 14% more
placements with respect to P irr

n , as shown in Figure 4.
A last relevant issue related to the generation of the feasible

placement is the aspect ratio, that is the ratio between the
width and the height of a placement. Indeed, as discussed
in [15] and [14], extreme aspect ratios (e.g. lower than 1:5
or higher than 5:1) often lead to implementations with high
routing congestion and low performance. This issue is mainly
suffered on the vertical direction since its axis is more coarse-
grained. Thus, placements with such elongated shapes can be
filtered during the placement generation process; then, among
the available ones, higher cost can be attributed to placements
with extreme aspect ratios during the exploration phase.

Algorithm 1 automates the computation of the sets Pw
n .

The procedure executes an extensive search of the possible
placements by scanning all the valid coordinates of the device
starting from the bottom left corner of the FPGA. For each
point on the coordinate system, the algorithm considers all the
possible placement heights that do not exceed the boundaries
of the device and search for the minimal width needed to
cover the required resources. Notice that depending on the
resource requirements and on the presence of hard processors
and static logic, the search for the minimal width can fail; in
these situations the corresponding placement is not generated.
In case of success, the searchMinimalWidth function returns
the minimal width for the current starting point and height.
If it is not possible to find a feasible placement for the given
height and position, the method returns 0. At the same time
the validAspectRatio function is called to check if the current
placement has to be discarded due to extreme aspect ratios.

From an asymptotic complexity point of view, searchMin-
imalWidth function is the most time consuming operation
in the innermost loop. By using a binary search and pre-
computing the resources occupied by each placement on the
device, this function can be implemented with a O(logW )
time complexity. Since the set V L, representing valid left
coordinates for the regions, has a size proportional to W ,
searchMinimalWidth function is invokedO(|N |·H2·W ) times.
In conclusion, Algorithm 1 has an overall time complexity of
O(|N | · H2 ·W · logW ). Notice that H and W are usually
small numbers and the placements generation takes only a
small amount of time compared to the overall optimization
of the floorplan. Another observation, deriving directly from
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the algorithm, is that the number of width-reduced feasible
placements for a region cannot exceed H2 ·W . As discussed
in Section VII, in real situations the number of feasible
placements is limited up to few thousands items per set,
and therefore leads to manageable conflict graphs and to a
placements generation time of few seconds.

VI. FLOORPLANNING EXPLORATION

Once the feasible placements are generated, the second
phase of the proposed floorplanning framework consists in
the choice of the most suitable placement p for each region
n among the available ones, such that 1) all selected place-
ments do not overlap, meaning that no conflict edge exists
among pairs of such placements, and 2) a specified objective
function is optimized. The proposed floorplanning automation
framework supports the integration of any automation engine
capable of solving such an exploration problem by working on
the defined conflict graph. It is worth noting that even if the
conflict graph has a small size, the solution space, represented
by the Cartesian product of the sets of feasible placements of
each reconfigurable region, has a size that grows exponentially
with respect to the number of regions, thus motivating the
necessity of an efficient exploration engine.

In the preliminary formulation of the framework [16] we
adopted an exploration engine based on an exact MILP model,
whereas, within this work we designed and tested various
heuristic methods in order to improve the floorplan exploration
time. During our experimental sessions, we identified the Ge-
netic Algorithm (GA) engine extended with steepest descent
local search to be the most effective approach in finding near-
optimal solutions in a reduced amount of time. Therefore, we
here present the GA engine in details, while we refer the
reader to Appendix A for a description of the MILP model
that has been used as a baseline. From experiments conducted
with different placement sets, we also noticed that the width-
reduced placements Pw

n offer the best trade off in terms of size
of the resulting solution space and quality of the achievable
results. Hence, in the following discussion we refer to sets
Pw
n , even though the approach is still valid when other sets of

placements such as Pn or P irr
n are considered.

The proposed GA engine for automating the floorplanning
exploration is based on the classical simple Genetic Algorithm
formulation [19]. We defined a solution encoding exploiting
the enumeration of the feasible placements identified during
the first phase of the floorplanning framework. More precisely,
the chromosome is a linear vector where each position rep-
resents a reconfigurable region n, and the contained value
refers to the feasible placement p in the corresponding set
Pw
n . Then, the standard crossover and mutation operators have

been employed. The crossover operator cuts in a random point
the chromosomes of two parent solutions and exchanges the
second parts to generate two children, while the mutation
operator replaces with a given probability the placement of
a region with another randomly selected placement in Pw

n .
In order to evaluate the solution we consider two different

cost metrics:
• Acost, the cost directly related to placement selection.

Algorithm 2 GA local search
1: function IMPROVESOLUTION(solution)
2: obj ←solution.evaluate()
3: repeat
4: oldObj ← obj
5: for each n ∈ N do
6: for each p ∈ Pn do
7: obj′ ← solution.evaluatePlacement(n, p)
8: if obj′ < obj then
9: solution.setPlacement(n, p)

10: obj ← obj′

11: until obj < oldObj
12: return solution

• Wcost, the cost deriving from inter region wire length.
The first contribution can be easily computed summing the
cost ap,n associated to each placement p ∈ Pw

n that is
selected for the current floorplan. As an example, the cost
ap,n can refer to the aspect ratio of the placement, amount of
wasted resources, or wire length of a connection to a fixed
I/O pin. On the other hand, the second metric estimates the
inter region wire length using the HPWL formula. HPWL
considers the wire connections concentrated in the center of
the regions and measures the wire length using the Manhattan
distance. In conclusion, the considered fitness function is a
linear combination of the two defined metrics and an additional
parameter λ able to handle unfeasible situations:

obj = qa ·
Acost

Amax
+ qwl ·

WLcost

WLmax
+ λ (11)

In the formula, Amax and WLmax represent the maximum
values that Acost and WLcost can assume respectively; they
are used to normalize the two contributions. Then, qa and
qwl are user-defined weights. In particular, the fitness function
first analyzes the feasibility of the solution only in terms of
fulfillment of the non-overlapping condition (REQ5), and then
computes the cost according to the selected metrics. If the
solution is unfeasible, a penalty value λ, defined as the number
of pairs of regions that overlap, is summed to the objective
value. In Equation (11) we force qa + qwl = 1 so that, valid
floorplans are represented by 0 < obj ≤ 1, while obj > 1
identifies unfeasible solutions. The goal of the λ factor is to
enable the selection operator of the GA (we use the classical
tournament selection) to rank unfeasible solutions in terms of
the criticality of the constraint violation.

The choice of a simple solution encoding and operators has
been driven by the possibility to directly manage the solution
space, as motivated in Section V. However, as a drawback, we
have noted during a preliminary experimental evaluation that
such GA engine is not able to obtain better performance than
the preliminary MILP approach since it generates too many
unfeasible solutions. In fact, the direct problem formulation
leads feasible solutions to evolve in unfeasible ones with a
high probability. The main cause is the crossover operator
that, due to its nature, applies “global changes” to each
explored solution; at the opposite the mutation operator which
performs local moves, has higher possibilities to make a
feasible solution to evolve to another feasible one, that is a
“neighbor” in the solution space. For this reason, such engine
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has been enhanced with a local search function, based on a
steepest descent heuristic, that improves the current solution
with iterated local modifications until no further improvement
is possible. The strategy, shown in Algorithm 2, is invoked
in the GA fitness function and guarantees to reach a local
optimum from the input solution. We empirically demonstrated
that the adoption of local search within GA leads to a hybrid
approach able to converge faster towards global optima [20].

VII. EXPERIMENTAL EVALUATION

The proposed floorplanning automation framework has been
implemented in C++; GAlib [21] has been used for the GA
engine. Within the following experimental sessions, we also
integrated in the framework a Simulated Annealing (SA)
engine, implemented in C++ by using the GNU Scientific
library [22], and the preliminary MILP formulation [16]. For
the other considered state-of-the-art approaches, the original
algorithms provided by the related authors have been adopted,
while all the MILP models have been solved using Gurobi 6.5.
Finally, we integrated a Graphical User Interface (GUI) for
analyzing and possibly modifying the floorplan solutions by
means of a Web application in Javascript and HTML52.

In the first experimental session, we performed an exten-
sive testing campaign considering a large set of synthetic
circuits aimed at demonstrating that the proposed GA engine
outperforms the state-of-the-art approaches, whereas in the
second section we performed a more in-depth comparison
of various engines (such as GA, SA and MILP) exploiting
the same direct problem representation proposed in this paper.
Finally, we carried out two real case studies to show that the
framework generates feasible floorplanning solutions possibly
without any manual action of the designer, and, moreover, it
is able to improve the system performance. The three sessions
are presented in the following sections. As a final note, all
the experiments have been performed on a 2.2GHz Intel Core
Duo T6600 processor running a Linux operating system.

A. Comparison with respect to past approaches

The first experimental session considered the test suite
of synthetic circuits from [8] targeted for the Virtex-5
XC5VLX110T device. This suite consists of 20 circuits with
different area occupancy and number of reconfigurable re-
gions; specifically there are 4 circuits having a number of
reconfigurable regions in the range {5, 10, 15, 20, 25}, while
with respect to area utilization there are 5 circuits for each
fixed device occupancy in the range {70%, 75%, 80%, 85%}.
It is worth noting that the maximum number of regions for the
considered circuits has been set by taking into account that
reasonably a reconfigurable system does not feature a larger
number of reconfigurable regions. Moreover, we also made
comparisons on some circuits from MCNC and GSRC suites,
adapted as done in [6]; more precisely, we considered apte,
xerox, hp, ami33 and ami49 targeted for a more recent
Virtex-7 XC7K160T device.

2A preview of the GUI can be accessed at: http://floorplacer.necst.it

In this first session, we compared our GA engine (dubbed
PA-GA3) against the most efficient state-of-the-art approaches
discussed in Section II, i.e., [6], the HO and O MILP-
based algorithms presented in [8] and our preliminary MILP
formulation [16] (dubbed as PA-MILP). Nevertheless, in order
to perform the comparison it was necessary to remove require-
ments REQ3 and REQ4 from the placement generation process
since previous approaches do not support them and their
integration for [6] and [8] is not straightforward. Regarding
the objective function, in this section we only considered
the overall wire length since it has been noted to be the
most challenging optimization goal. For each experiment we
executed 10 runs of [6] and considered the best result as its
final solution. According to the approach defined in [8], we run
the HO approach by starting from some of the best solutions
found by [6] (the ones within 10% from the best one), and
subsequently O by using the final solution achieved by HO.
For all the MILP formulations, the Gurobi solver execution
time was limited to 1800 seconds, whereas, for PA-GA engine
we used a stopping criterion based on elapsed time and the
same time limit was applied. The elaboration was parallelized
on all the available cores by using the Threads Gurobi setting
and by running different processes for PA-GA with different
random seeds. Notice however that the time limit does not take
into account the time needed by PA-MILP and PA-GA for the
generation of the feasible placements and the additional time
to generate the initial solution for O [8]. Finally, PA-GA and
PA-MILP used Pw

n as input.
Tables II and III show the results of this first experi-

mental session both in terms of execution time and quality
of the achieved solutions. PA-GA was always able to find
equivalent or better solutions than PA-MILP that in turns
provided better results than [8] and [6]. Furthermore, the
highest improvements were achieved for the most challenging
circuits consisting of high number of reconfigurable regions.
Specifically, for the test cases having 20 and 25 regions PA-
GA reduced the wire length of PA-MILP solutions by 8.2%
on average while using the same amount of time. On the
other hand, when considering the variation of resource usage
(reported in Table III), as expected, the best results for both
PA-GA and PA-MILP are obtained for circuits with lower
resource requirements even if there is no pronounced trend.

Table IV reports the results for the re-adapted MCNC and
GSRC benchmarks. Results show that PA-MILP gives an
improvement with respect to O that varies from 1.2% on
ami33 to 49.5% on hp circuits, while with respect to the
comparison between PA-MILP and PA-GA, the results are
aligned to the synthetic benchmark trend. Indeed, for apte,
xerox and hp circuits both PA-MILP and PA-GA provides
a similar overall wire length, whereas, when dealing with the
bigger ami33 and ami49 circuits, PA-GA is able to improve
PA-MILP solutions by 18.8% and 18.0% respectively.

It is worth noting that for the synthetic circuits having 5
reconfigurable regions (Table II), PA-MILP is able to certify
the optimality of the solutions and thus complete its execution

3The label PA, standing for Proposed Approach, here identifies all the
engines based on the direct problem formulation proposed in this work.
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TABLE II
RESULTS WITH DIFFERENT NUMBERS OF RECONFIGURABLE REGIONS

# RRs
Average wire length Average execution

improvement w.r.t. [6] time (sec)

HO[8] O [8] PA-MILP [16] PA-GA [6] HO [8] O [8] PA-MILP [16] PA-GA

5 6.99% 7.48% 7.46% 7.46% 11.0 13.3 84.1 32.5 1801.2
10 7.59% 11.65% 17.98% 19.07% 24.1 48.3 1848.3 1421.8 1801.4
15 8.88% 16.25% 34.03% 36.14% 41.1 74.6 1874.6 1802.1 1801.7
20 5.47% 14.80% 33.29% 39.17% 65.5 82.8 1882.9 1802.6 1801.9
25 5.67% 24.01% 40.72% 45.32% 94.0 119.1 1919.2 1803.0 1802.3

TABLE III
RESULTS WITH DIFFERENT OVERALL DEVICE OCCUPANCY

Occupancy
Average wire length Average execution

improvement w.r.t. [6] time (sec)

HO [8] O [8] PA-MILP [16] PA-GA [6] HO [8] O [8] PA-MILP [16] PA-GA

70% 8.51% 17.40% 30.19% 32.15% 47.4 87.6 1559.0 1454.7 1801.7
75% 5.49% 18.89% 26.21% 28.74% 47.3 67.1 1514.2 1138.9 1801.7
80% 6.20% 12.86% 27.57% 30.73% 47.1 60.0 1508.1 1448.9 1801.7
85% 7.48% 10.20% 22.82% 26.10% 46.7 55.8 1505.9 1447.1 1801.7

TABLE IV
APPROACHES COMPARISON ON DIFFERENT TEST CASES

Circuit # RRs Wire length Execution time (sec)

[6] HO [8] O [8] PA-MILP [16] PA-GA [6] HO [8] O [8] PA-MILP [16] PA-GA

apte 9 12789 12029 9682 5313 5206 21.75 147.93 1947.93 1801.87 1801.88
xerox 10 26589 25878 22974 12643 12813 25.53 307.97 2107.98 1802.36 1802.37
hp 11 12403 11796 11036 5568 5298 29.42 201.04 2001.05 1802.41 1802.45
ami33 33 172332 157583 130121 128538 104414 164.61 324.54 2124.57 1803.93 1803.98
ami49 49 55819 53178 36930 22669 18583 180.54 192.25 1992.26 1809.35 1809.47

before the given time limit. PA-GA, being a meta-heuristic
approach, cannot state if the identified solution is optimal,
and, hence, the execution time of the algorithm depends on
the time budget assigned. However, in these cases, we noted
that PA-GA converge faster to the optimal solution than PA-
MILP, while as the problem grows above the 10 regions,
no MILP formulation is able to reach the optimal solution
in a reasonable time when the inter-region wire length is
considered. In fact, in our tests we run the PA-MILP, i.e. the
most efficient MILP formulation for several hours; however,
after an initial very fast convergence to a near-optimal solution,
the engine was not able to improve the solution or certify its
optimality. This is related to the weak linear relaxation bounds
provided by the MILP formulation with respect to inter-region
wire length; the issue was only partially mitigated by using
additional cuts to the model (see Appendix A). As an example,
we report in Figure 5 the graph representing the improvement
of the best solution for the considered algorithms. We may
note from the figure that PA-GA is the faster to evolve towards
near-optimal solutions. This trend is representative for all the
performed tests. Moreover, we noted that on average PA-GA
and PA-MILP tends to stabilize their solutions in less than 600
seconds, while after that, no relevant improvement is reported.

As a final note, the generation of the definition of the
conflict graph model had a negligible impact on the overall
execution time of the proposed algorithms. Indeed, in real
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Fig. 5. Solution improvement over time for different approaches on the
ami49 test case.

situations, the size of the conflict graph is manageable; as an
example, for the circuit having the highest number of regions
(ami49), the feasible placements generation process produced
146446 nodes in less than 10 seconds.

B. Analysis of engines based on the proposed representation

In a second session, we performed a more challenging com-
parison of PA-GA against other engines exploiting the same
direct problem representations. In particular, we considered 1)
PA-MILP, 2) an SA engine (called PA-SA), since it represents
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TABLE V
PROPOSED APPROACHES COMPARISON WITH DIFFERENT NUMBER OF REGIONS

# RRs
Solutions improvements w.r.t. PA-MILP [16]

qa = 1.0, qwl = 0.0 qa = 0.5, qwl = 0.5 qa = 0.0, qwl = 1.0
PA-SA PA-GAn PA-GA PA-SA PA-GAn PA-GA PA-SA PA-GAn PA-GA

5 0.00% -3.78% 0.00% -0.77% -11.95% 0.00% -3.11% -2.77% 0.00%
10 -4.31% -23.02% 0.00% -2.32% -27.09% 0.18% -8.59% -29.16% 0.55%
15 -7.25% -31.62% -0.27% -6.19% -21.16% 5.28% -12.69% -78.73% 5.35%
20 -9.97% -31.53% -0.94% -4.44% -17.45% 7.09% -15.29% -30.36% 10.41%
25 -17.02% -24.34% -0.35% -7.38% -20.66% 9.42% -3.75% -8.78% 19.39%
30 -10.19% -18.97% -0.60% -10.74% -16.80% 8.95% 0.21% -21.48% 21.86%

TABLE VI
PROPOSED APPROACHES COMPARISON WITH VARYING RESOURCE USAGE

Usage
Solutions improvements w.r.t. PA-MILP [16]

qa = 1.0, qwl = 0.0 qa = 0.5, qwl = 0.5 qa = 0.0, qwl = 1.0
PA-SA PA-GAn PA-GA PA-SA PA-GAn PA-GA PA-SA PA-GAn PA-GA

70% -9.63% -17.24% 0.00% -1.02% -13.23% 7.50% 1.44% -15.95% 10.67%
75% -7.72% -24.94% -0.32% -3.77% -11.13% 5.98% -3.16% -21.95% 9.29%
80% -6.37% -19.66% -0.28% -11.66% -28.70% 3.21% -17.54% -53.37% 7.95%
85% -8.75% -26.81% -0.82% -4.76% -25.84% 3.94% -9.52% -25.12% 10.49%

the classical approach for floorplanning strategies, and 3) a GA
engine exploiting the same solution encoding but without any
local search strategy (dubbed as PA-GAn). The SA engine was
defined on the basis of the standard SA algorithm and re-using
the evaluation and mutation functions of the GA engine. In this
experimental session we considered PA-MILP as a baseline,
since it has been the preliminary automating solution designed
for the proposed framework. For this analysis, we included
requirements REQ3 and REQ4, and we re-adapted the suite
of the first session to target a Virtex-7 XC7V585T device;
we actually modified the resource requirements of the circuits
according to the size of the new device and we considered a
new set of circuits with 30 regions. It is worth noting that the
considered Virtex-7 device presents a higher heterogeneous
distribution of resources and requires the introduction of more
forbidden placements than the Virtex-5 one used in the first
experimental session. Indeed, in some preliminary tests, we
found that the considered state-of-the-art engines in [6], [8]
failed in finding any feasible solution on this device.

Moreover, the tests have been performed considering differ-
ent settings of the objective function ranging from an optimiza-
tion based only on placements cost (qa = 1.0, qwl = 0.0), one
considering only wire length (qa = 0.0, qwl = 1.0) and finally
a mixed objective function taking into account both metrics
to the same extent (qa = 0.5, qwl = 0.5). In order to perform
a fair comparison of the approaches in terms of exploration
efficiency, according to the discussion in Section VII-A we
fixed a limited time budged of 600 seconds that includes the
time for the generation of the feasible placements. Except for
the new time limit, the run settings for PA-MILP and PA-GA
were as in the previous section, whereas, we restarted PA-
SA engine several times on the available cores using different
random seeds until the available time budget elapsed.

Table V and Table VI compare the obtained results accord-
ing to the number of regions and device usage respectively.

For the problem instances consisting of 5 regions the MILP
approach and the GA were both able to find the optimal
solution in all cases, whereas the SA engine found optimal
solutions only when the objective function was set to consider
uniquely region placements cost. In general, the SA engine
was almost never able to achieve better solutions than the
MILP based algorithm except for some problem instances
consisting of large number of regions. This result is quite
interesting since SA is the commonly used approach for
automating the floorplanning exploration. On the contrary, we
may conclude that it is not well-suited for the defined problem
representation due to the fact that many unfeasible solutions
can be generated.

PA-GA proved to be an effective approach, leading to almost
the same results for an optimization based on placement
cost, while greatly outperforming the MILP engine when
considering the most difficult problem, that is the wire length
optimization. This is especially highlighted when the circuits
feature a large number of regions or a low resource usage.
This improvement was mainly obtained exploiting local search
within GA that allows to quickly explore a solution space
consisting of local optimal solutions. Indeed, as it is possi-
ble to notice from the two tables, PA-GAn provides results
considerably far from its enhanced counterpart since it spends
a large amount of time exploring unfeasible regions of the
solution space, without the capability to recover to a feasible
solution. It is worth noting that in some experiments PA-GAn
was not able even to find an initial feasible solution; such
situations were discarded from the results reported in the two
tables. Thus, we may conclude that the GA engine is the most
promising solution for the proposed floorplanning framework.

C. Case studies

Finally, we validated the proposed approach on two real case
studies to be implemented on a Virtex-7 XC7V585T device.
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The first case study is a re-adaptation of a Xilinx sample design
(project cpu virtex7), consisting of five modules connected
using a star topology, whereas the second case study is
an in-house design of a an image processing pipeline with
reconfigurable components. As already noted in the previous
section, the approaches proposed in [6] and [8] do not consider
requirements REQ3 and REQ4 thus leading to potentially
invalid floorplan solutions with respect to the subsequent place
and route phase. Hence, we compared the results achieved by
the proposed floorplanner with respect to solutions designed
manually by starting from the initial placements provided by
the place pblock feature available in Vivado. This Vivado
feature provides the user with suggestions on where to place
the reconfigurable regions, however the identified placements
do not meet PR guidelines and require manual modifications.

Similarly to [15], the Xilinx case study has been re-adapted
considering each of the five available modules as reconfig-
urable, thus leading to five distinct reconfigurable regions each
containing a single module. Notice however that this does
not represent a limitation for the evaluation of the proposed
approach since the employed implementation flow is the same.
The resource requirements of the reconfigurable regions are
derived from the requirements of the corresponding modules
(shown in Table VII) in which the number of LUTs was
augmented by approximately 25% to ensure enough space for
the insertion of proxy logic [1]. Furthermore, the number of
interconnections among reconfigurable regions together with
interconnections to I/O are summarized in Table VIII.

For the exploration, the objective function was set to con-
sider wire length and resource consumption to the same extent
in order to reduce both reconfiguration overhead and improve
the possibility to meet timing constraints. The floorplan so-
lution identified by PA-GA is shown in Figure 6a together
with the placed and routed circuit. Overall the implementation
phase was successful and the timing constraint requiring a
100MHz frequency was met. On the other hand, Figure 6b
presents the initial solution provided by Vivado place pblock,
and Figure 6c the subsequent manually re-adapted floorplan.
It is clearly visible that the designer has to perform a con-
siderable and intrusive change of the solution proposed by
Vivado; from our experience we may report that such activity
requires around 2 hours of time, while our automated engine
requires a few minutes. Moreover when considering the quality
of the achieved solutions, this second one was not able to
meet timing during implementation due to not optimized inter-
region interconnections. By lowering the timing constraint it
was possible to meet timing at 80MHz, however no place
and route solution was found satisfying timing constraints
with frequency equal or higher than 85MHz. Furthermore, the
floorplan produced by the GA engine was able to reduce the
overall size of the partial bitstreams by 25.7% with respect to
the manual solution.

As a second case study, we realized a design in the context
of image analysis consisting of seven different modules whose
interconnections are shown in Figure 7. In particular, the
design is composed of two main computational pipelines that
operate on a gray scaled image. The first pipeline includes the
histogram, Otsu filter and threshold 1 modules, it binarizes

TABLE VII
RESOURCE REQUIREMENTS OF MODULES FROM THE XILINX CASE STUDY

Module LUTs Registers F7 Muxes F8 Muxes BRAMs DSPs

cpuEngine 7440 3892 297 0 21 4
fttEngine 2837 1679 0 0 16 96
usbEngine0 6000 4699 259 81 36 0
usbEngine1 6080 4699 259 81 36 0
wbArbEngine 6800 1044 1959 172 0 0

TABLE VIII
INTERCONNECTION MATRIX OF REGIONS FOR THE XILINX CASE STUDY

Region fttEngine usbEngine0 usbEngine1 wbArbEngine I/O

cpuEngine 1 0 0 311 0
fttEngine - 0 0 106 69
usbEngine0 - - 0 118 69
usbEngine1 - - - 118 0
wbArbEngine - - - - 0

the given image by applying the Otsu separation algorithm
[23], while, the second pipeline is configured to perform
edge detection by exploiting the Gauss filter, Laplace filter
and Threshold 2 modules. The modules were generated by
using Vivado HLS and AXI stream interfaces were used
for communication. Furthermore, we implemented different
alternative versions of each module within the design (em-
ploying different algorithms or having a different trade-off
between results accuracy and execution time) to exploit partial
reconfiguration to switch from one to the other one; thus, seven
reconfigurable regions were considered (one for each compo-
nent within the original design). The resource requirements
for each version of the various modules are listed in Table IX,
whereas the requirements for the corresponding reconfigurable
regions were obtained as in the previous case study.

Even in this scenario, the objective function was tuned
to take into account inter-region wire length, regions aspect
ratio and wasted resources to the same extent. Within this
case study, an analysis of the post-implementation results
showed that the critical paths were represented by the internal
interconnections between the computational logic and the local
BRAMs of the modules, whereas, inter-region interconnec-
tions were easily routed. Due to the peculiar characteristics
of this design, both the PA-GA and manually re-adapted
floorplans were able to meet timing at 120MHz and failing
at a frequency equal or higher than 125MHz. Moreover, the
floorplan produced by the GA engine was able to reduce
the overall size of partial bitstreams of the manual solution
from 9695 KB to 8815 KB, hence leading to a smaller
reconfiguration time. Finally, similarly to the previous case,
the manual definition of the floorplan required about 2 hours
of activity.

VIII. CONCLUSIONS

This work has proposed a novel floorplanning automation
framework, compatible with the Xilinx tool-chain and its PR
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Timing failure due to inter-region interconnections

(a) (b) (c)

!! = {1,2,3}!Fig. 6. Floorplans for the Xilinx case study: (a) place and route of PA-GA floorplan at 100MHz constraint, (b) initial floorplan obtained with Vivado place
pblock, and, (c) place and route of manually adapted Vivado floorplan at 90MHz constraint.
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!! = {1,2,3}!Fig. 7. Modules interconnections for the image processing case study.

TABLE IX
RESOURCE REQUIREMENTS OF MODULES FOR THE IMAGE PROCESSING

CASE STUDY

Region Module LUTs FFs BRAMs DSPs

Laplace filter LF v1 628 332 64 2

Gauss filter GF 3x3 807 465 64 0
GF 3x3 float 881 809 32 5
GF 5x5 float 815 760 32 5

Gray scale GS v1 334 238 64 4

Histogram Hi v1 256 180 1 0
Hi v2 104 87 1 0

Otsu filter OF v1 1205 1164 0 13
OF v2 726 517 0 2

Threshold 1 Th v1 115 71 0 0

Threshold 2 Th v1 115 71 0 0

flow. The framework considers a direct problem representa-
tion, which consists in an explicit enumeration of the possible
placements of each region. The defined model allows to
simplify the development of efficient floorplanning algorithms
devoted to the optimization of different metrics such as aspect
ratio, inter-region wire length and resource consumption. Var-
ious engines, based on an exact MILP formulation, GA and
SA heuristic approach, possibly enhanced with local search
strategies, have been designed for automating the floorplanning

activity. Such algorithms are experimentally evaluated with a
challenging synthetic benchmark suite and real case studies.
Experimental results demonstrated the effectiveness of the
proposed direct problem representation and superiority of the
defined GA engine with respect to the other defined strategies
and the state-of-the-art approaches in terms of exploration time
and identified solution.

APPENDIX A
MILP FORMULATION

Within this appendix we report the MILP model proposed in
the preliminary version of the framework [16] and used within
Section VII as a baseline for algorithms comparison. The
variables, sets and parameters of the formulation are listed in
Table X, whereas the model constraints and objective function
are summarized in Table XI.

In the proposed model, the binary variables xn,p represent
the current solution by stating which placement p is chosen
for a given region n; when considering the conflict graph,
these variables state which specific node is selected for each
region. Thus, a first class of constraints, dubbed as placements
constraints, guarantees that a given solution is feasible: in
particular, exactly one placement for each region must be
selected (C1), and no pairs of placements connected by an
edge can be selected since they are overlapping (C2). It is
worth noting that constraint C2 is defined on maximal cliques
(i.e. fully-connected subgraphs) in the conflict graph instead of
single edges. This allows to reduce the size of the model while,
at the same time, improves the linear relaxation bounds during
the MILP solving process [24], so that the overall effect is a
speed-up in the MILP solver performance. Such a reduction in
the problem size can be clearly seen in Figure 8, by analyzing
the number of edges between the placements generated for
two regions when varying equally their requirements in terms
of CLBs; more precisely, the figure compares the number of
non-zero terms within the constraint matrix of the complete
MILP model using the single edges approach and the maximal
cliques approach.
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TABLE X
MILP VARIABLES, SETS AND PARAMETERS

Sets
N set of reconfigurable regions to floorplan

Pw
n set of width-reduced feasible placements for region n

I set of interconnections between regions. Each element is a

tuple of the form: (n1, n2, b) where n1 and n2 are the

regions involved in the interconnections and b is its width

Parameters
W maximum value on the horizontal direction

H maximum value on the vertical direction

tileW the width of a tile within the FPGA

tileH the height of a tile within the FPGA

an,p cost associated to placement p ∈ Pw
n for region n ∈ N

qa weight associated to the area cost

qwl weight associated to the wire length cost

Amax maximum cost due to placements selection

WLmax maximum cost related to global inter-region wire length

Variables
xn,p binary variable set to 1 if and only if the placement

p ∈ Pw
n is selected for region n ∈ N

cxn x coordinate of region n ∈ N centroid

cyn y coordinate of region n ∈ N centroid

dxn1,n2 horizontal distance between centroids of regions n1, n2 ∈ N

dyn1,n2 vertical distance between centroids of regions n1, n2 ∈ N

Acost floorplan cost due to placements selection

WLcost floorplan cost related to global inter-region wire length
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Fig. 8. Comparison of model size for the maximal cliques and single edges
MILP formulations on a problem consisting of two regions having equal
resource requirements.

A second class of constraints, parameters and variables are
used to compute the cost OBJ of a given solution, that is
equivalent to the one used for the GA engine without the
penalty contribution. Constraint C9 computes the Acost metric
by summing the cost ap,n of each selected placement, while
constraint C10 computes the global HPWL. The specification
of C10 requires the introduction of variables cxn and cyn
to compute the coordinates of the centroid of each region n,
and variables dxn1,n2 and dyn1,n2 to compute the Manhattan
distance between the centroids of each couple of regions n1
and n2. Moreover, in order to guarantee the semantics of these

TABLE XI
MILP MODEL CONSTRAINTS AND OBJECTIVE FUNCTION.

Placements constraints
C1

∑
p∈Pw

n
xn,p = 1, ∀n ∈ N

C2
∑

n∈N,p∈Pw
n :p⊥(xp,yp,1,1) xn,p ≤ 1,

∀xp ∈ [0,W − 1], yp ∈ [0, H − 1]

Wire length semantics
C3 cxn =

∑
p=(xp,yp,wp,hp)∈Pw

n
xn,p · (xp+ wp/2),∀n ∈ N

C4 cyn =
∑

p=(xp,yp,wp,hp)∈Pw
n

xn,p · (yp+ hp/2), ∀n ∈ N

C5 dxn1,n2 ≥ cxn1 − cxn2, ∀n1, n2 ∈ N | n1 6= n2

C6 dxn1,n2 ≥ cxn2 − cxn1, ∀n1, n2 ∈ N | n1 6= n2

C7 dyn1,n2 ≥ cyn1 − cyn2, ∀n1, n2 ∈ N | n1 6= n2

C8 dyn1,n2 ≥ cyn2 − cyn1, ∀n1, n2 ∈ N | n1 6= n2

Cost functions definition
C9 Acost =

∑
n∈N,p∈Pw

n
an,p · xn,p

C10 WLcost =
∑

(n1,n2,b)∈I(dxn1,n2 · tileW + dyn1,n2 · tileH) · b
Additional cuts
C11 dxn1,n2 + dyn1,n2 ≥∑

p=(xp,yp,wp,hp)∈Pw
n1

xn1,p ·min{wp/2, hp/2}+∑
p=(xp,yp,wp,hp)∈Pw

n2
xn2,p ·min{wp/2, hp/2},

∀n1, n2 ∈ N | n1 6= n2

Objective function
OBJ min

{
qa · Acost

Amax
+ qwl · WLcost

WLmax

}

variables constraints C3-C8 are specified; constraints C3-C4
compute the coordinates of the centroids, while constraints
C5-C8 ensure that the distances among regions cannot be less
than expected.

An in-depth analysis of the formulation has shown that
constraints C3-C8 give weak bounds when the linear relaxation
of the MILP model is solved. For this reason we introduced
the additional cut C11, stating that that the centroid distance
of two regions has to be at least the sum of the distances
to reach the centroids of the selected placements from their
nearest borders. Indeed a wire connecting the centroids of two
placements has to cross at least one border for each of them.
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