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SUMMARY

Starting from the fundamental laws of filtration and transport in biological tissues, we develop a computa-
tional model to capture the interplay between blood perfusion, fluid exchange with the interstitial volume,
mass transport in the capillary bed, through the capillary walls and into the surrounding tissue. These
phenomena are accounted at the microscale level, where capillaries and interstitial volume are viewed as
two separate regions. The capillaries are described as a network of vessels carrying blood flow. We apply
the model to study drug delivery to tumors. The model can be adapted to compare various treatment
options. In particular, we consider delivery using drug bolus injection and nanoparticle injection into the
blood stream. The computational approach is suitable for a systematic quantification of the treatment
performance, enabling the analysis of interstitial drug concentration levels, metabolization rates and cell
surviving frac-tions. Our study suggests that for the treatment based on bolus injection, the drug dose is not
optimally delivered to the tumor interstitial volume. Using nanoparticles as intermediate drug carriers
overrides the shortcomings of the previous delivery approach. This work shows that the proposed
theoretical and com-putational framework represents a promising tool to compare the efficacy of different
cancer treatments.
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1. INTRODUCTION

Mass transport plays a fundamental role in the development of cancer. At different phases of cancer
disease, such as the propagation of growth signals, the invasion of other tissue and the activation of
angiogenesis, tumors use mass transport phenomena to interact with the surrounding environment
[1]. Mass transport is also at the basis of cancer pharmacological treatment. Targeting vascularized
tumors using the vascular network is a natural therapeutic option. Nevertheless, the success of anti-
cancer therapies in treating cancer cells is limited by their inability to reach their target in vivo in
adequate quantities [2]. An agent that is delivered intravenously reaches cancer cells via distribu-
tion through the vasculature, transport across the wall of the vessels and transport through the tissue
interstitium. Each of these steps can be seen as a barrier to delivery. In addition, delivered molecules
may bind to constituents of the extracellular matrix and be metabolized by cells.

The characteristic traits of cancer can be seen as the emergent effects of a cascade of phenom-
ena that propagate from the molecular scale, through the cell and the tissue microenvironment, up
to the systemic level. Transport phenomena at the level of the capillary network (the microenviron-
ment or microscale) play a key role in this sequence of effects. In particular, the alterations of the
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capillary phenotype of a tumor significantly affect the drug delivery process [3]. More precisely,
blood vessels in tumors are leakier and more tortuous than the normal vasculature and the pressure
generated by the proliferating cells reduces tumor blood and lymphatic flow. These perturbations
lead to an impaired blood supply and abnormal tumor microenvironment characterized by hypoxia
and elevated interstitial fluid pressure. They also reduce the ability to deliver drugs.

The objective of this work is to perform a comparative study of different modalities to deliver drug
to a vascularized tumor mass. This is achieved by developing a new computational pharmacokinetic
model able to capture the absorption of a drug through the vascular network as well as its distribu-
tion and metabolization in the tumor. Following the seminal sequence of works by Baxter and Jain
[4-7], we believe that the interplay between blood perfusion, fluid exchange with the interstitial
volume, mass transport in the capillary bed, through the capillary walls and into the surrounding tis-
sue, are important effects to understand the delivery process at the microscale. Temporal and spatial
dependence will be fully accounted in our governing equations, in contrast to the approach based
on compartment models. Because we consider these phenomena at the level of capillaries, it is pos-
sible to derive the governing equations from a mechanistic standpoint based on the fundamental
laws of flow and mass transport. The model is also suitable for being adapted to different delivery
methods. Besides studying the case of bolus injection, which consists in delivering a solution con-
taining the active drug into the peripheral systemic circulation, we analyze the delivery of drug from
nanoparticles, which are in turn injected into the blood stream and interact with the capillary walls.

The analysis of tissue perfusion and mass transport has been addressed using various advanced
approximation approaches. Without any ambition to provide an exhaustive literature review, we
mention [8, 9] where the problem of cardiac perfusion is addressed, [10, 11] where homogenization
techniques are applied to characterize the average transport properties of tumor tissue constructs and
[12] where isogeometric analysis is used to model angiogenesis in vascularized tumors.

The model that we develop ends up to be a system of partial differential equations, which are hard
to solve with analytical tools. For this reason, we complement the model with a state of art numerical
solver, based on the finite element method. The numerical scheme is based on the idea to represent
the capillary bed as a network of one-dimensional channels that acts as a concentrated source of flow
immersed into the interstitial volume, because of the natural leakage of capillaries. As a result, it can
be classified as an embedded multiscale method. In the case of simple geometrical configurations
of capillary vessels, such as an array of straight channels, semi-analytic solutions of the problem
have been developed [13-15]. A more extensive application of numerical approximation methods
has recently enabled the analysis of realistic microvascular geometries [2, 16-18]. Here, we extend
this approximation strategy to problems involving blood flow and mass transport. The main advan-
tage of the proposed scheme is that the computational grids required to approximate the equations
on the capillary network and on the interstitial volume are completely independent. As a result,
arbitrarily complex microvascular geometries may be potentially considered. From the standpoint
of numerical approximation, the theoretical aspects of the method have been addressed in the works
by D’Angelo [19-21].

Our results suggest that using nanoparticles as intermediate vectors for chemotherapy improves
the treatment. For the same amount of injected dosage, drug charged nanoparticles provide higher
concentration levels in the interstitial tissue of the tumor and more persistent delivery over time with
respect to bolus injection. Thanks to the computational approach, these conclusions are based on
the analysis of specific performance indicators, such as the interstitial drug concentration level, the
drug metabolization rate, the cell surviving fraction and the corresponding timecourses.

2. MATERIALS AND METHODS

We start the derivation of the model by presenting the governing equations for microcirculation,
tissue perfusion and mass transport. In a second phase, we will adapt these general equations to
specific cases. The first case is the study of the coupled transport of oxygen and tirapazamine, a drug
specifically designed to target hypoxic cells. In the second one, we apply the theory to analyze the
delivery of drugs consequent to the injection of nanoparticles into the tumor region.



Figure 1. Visualization of a realistic vascular network that is used in the simulations, courtesy of Dr T.

Secomb, available online at [22]. Below, we illustrate the transition from a three-dimensional representation

of the vascular and interstitial domains, €2, 2 respectively, to the corresponding one-dimensional descrip-

tion of the vessels, where 2 denotes the interstitium and A is the capillary network. The colors on the sides
of the tissue sample identify the inflow (red) and the outflow (blue) sections of the capillary network.

We aim to model fluid and mass transport in a permeable biological tissue perfused by a capillary
network. We consider a domain €2 that is composed by two parts, €2, and €2;, the capillary bed
and the tumor interstitium, respectively. To account for the microvascular network, we model the
capillaries as cylindrical vessels. We denote with I" the outer surface of 2, with R its radius and
with A the centerline of the capillary network. A characteristic feature of the computational model is
that the capillaries are actually represented as one-dimensional channels. As shown in [13-15, 17],
this approximation significantly simplifies the problem at the computational level. This is performed
by taking the limit R — 0 and shrinking the capillary bed to its centerline A. We denote with s
the arc length coordinate along this line. A sketch of the domains before and after adopting the
one-dimensional representation of the capillary network is visualized in Figure 1. After this step,
we observe that the distinction between the subregion €2; and the entire domain €2 is no longer
meaningful, because A has null measure in R<. For notational convenience, in what follows, we
will then identify €2; with Q and ©, with A.

The physical quantities of interest are the flow pressure p, the velocity u and the concentration
of transported solutes c. They are all defined as fields depending on time ¢ and space, being x € 2
the spatial coordinates. Furthermore, we denote with the subscript v their restriction to the capillary
bed (vessels), and with ¢ the restriction to the interstitial tissue. The derivation of our model stems
from fundamental balance laws regulating the flow in the capillary bed, the extravasation of plasma
and solutes and their transport in the interstitial tissue.

2.1. Governing equations for flow and mass transport

The flow model consists in two parts, the microcirculation and the flow in the interstitial volume,
which interact through suitable interface conditions. We assume that the tumor interstitium behaves
as an isotropic porous medium. The flow through the interstitium is modeled by the Darcy’s law. A
Newtonian model is applied for the blood flow in the capillaries. We want to take into account of the
lymphatic drainage, which plays an important role in the phenomena we aim at studying [16, 23].

Microcirculation is an extreme case where the size of vessels is the smallest and the effect of
blood pulsation is almost negligible. The Reynolds and the Womersley numbers characterizing the
flow are very low if compared to other regions of the vascular network. As a result, Poiseuille’s law
for laminar stationary flow of incompressible viscous fluid appropriately describes this flow [4, 13].
Let us decompose the network A into individual branches A;,i = 1,..., N. We denote with A;
an arbitrary orientation of each branch that defines the increasing direction of the arc length s; (see
also Figure 1). Let A, s be the same quantities referring to the entire network A.

One of the functions of the capillary network is to transport and distribute fluid and chemicals to
the interstitial volume. This is achieved by means of the leakage of the capillary walls. We model
this effect using the Kedem—Katchalsky equation, which expresses the volume flow Jp,



Jp =L, ((pv —pt) — Z* o* (ﬂ: - ”t*)) ’

where L, is the hydraulic permeability of the vessel wall (see Table I for units and physiologi-
cal values) and p, — p; is the pressure difference between the vessels and the interstitial volume.
Because of osmosis, the pressure drop across the capillary wall is affected by the difference in con-
centration of the chemicals dissolved in blood, [24, 25]. We denote quantities related to a generic
solute carried by blood with the superscript * and Y, represents the summation over all the sig-
nificant chemical species, as discussed below. Then, the oncotic pressure transmural gradient is
wy — ), where 7* = R,Tc* is the oncotic pressure given by a concentration ¢* of a given solute,
being R, the universal gas constant and 7" the absolute temperature. The oncotic pressure is mod-
ulated by the reflection coefficient ¢* that quantifies the departure of a semipermeable membrane
from the ideal permeability (where any molecule is able to travel across the membrane without
resistance). Although the index * spans over all solutes that are dissolved in blood, not all of them
significantly affect the oncotic pressure. Only the large molecules, such as proteins, can induce a
significant oncotic pressure gradient. Indeed, the oncotic pressure gradient is mainly due to the pres-
ence of albumin in blood, whose concentration can reasonably considered to be constant. According
to data provided in [24, 25, 27], the oncotic pressure gradient due primarily to albumin in arterioles
and capillaries is about 25 mmHg, which is comparable to the hydrostatic pressure in the vessel.
In contrast, we assume that solutes such as oxygen or low concentrated drugs cannot significantly
contribute. This assumption will be further discussed in what follows, on the basis of the physi-
cal parameters characterizing the transport of the considered solutes (Tables I and II). As a result,
for our purposes, the capillary leakage only depends on the hydrostatic pressure according to the
following expression,

Jo:=Lp ((pv— po) —0” (nf = 7)) = Lp ((pv — pr) =0 ReT (¢ = 7)) . (D)

Table I. Physical parameters characterizing the perfusion problem.

Symbol Parameter Units Value Source  Equation
Lp Hydraulic permeability, capillary wall m2s/kg 10710 [26] (1)
oPrf Vessel oncotic pressure mmHg 28 [25] 1)
oP nlp Interstitial oncotic pressure mmHg 0.1 [25] (H
LIL,F % Effective permeability, lymphatic vessels (mmHg hour)™! 0.5 [5] (2a)
K Hydraulic permeability, interstitial volume m? 10718 [16] (2b)
7 Blood viscosity kg/(ms) 4x1073 [16] (2b)
R Capillary radius pum 7.64 [22] (2¢)
po + Ap  Inflow pressure mmHg 35 [25] (®)]
Ap Axial pressure drop mmHg 1.25 [16] (5)
By Boundary conductivity m?s/kg 5x 1071 [16] (7

Table II. Physical parameters for oxygen and TPZ delivery, transport and metabolization.

Symbol Parameter Units Oxygen TPZ Equation
P Vascular permeability — cm/s 3.5% 1073 [17] 51073 221 3)
D; Interstitial diffusivity ~— cm?/s 1.35x 107> 2] 1.87x 107 [2] 4)
Dy Vascular diffusivity em?/s 5x 1073 221 6.926x107% 221 )
C,t,fifx Inflow concentration g/m?3 — — 48 [2] 6)
Co% . Inflow concentration mmHg 100 [28] — — (6)
Be Boundary boundary ~ m/s 107 [16] 107° [16] (®)
ngpz Metabolization rate g1 — — 0.0317 [2] ©)
X

myg Metabolization rate mmHg/s 8.0645 [2] — — 10)




where * = p denotes the contribution of proteins to the oncotic pressure and, in agreement with
the definition of 77, ¢ and ¢/ denote the constant protein concentration in the capillaries and
the interstitial tissue respectively. As a consequence, the flow equations do not depend on the ma
transport model that will be developed in the next section.

To balance capillary leakage, the venous and the lymphatic systems absorb the fluid in excess.
Following [5] and [23], we model them as a distributed sink term in the equation for the tis-
sue perfusion. More precisely, we assume that the volumetric flow rate due to lymphatic vessels,
®LF is proportional to the pressure difference between the interstitium and the lymphatics, namely
OLE (p)) = LéF %(p, — pL), Where LIL,F is the hydraulic permeability of the lymphatic wall,
S/V is the surface area of lymphatic vessels per unit volume of tissue and py, is the hydrostatic
pressure within the lymphatic channels. The values of these parameters with the corresponding units
are listed in Table I. The coupled problem for microcirculation and perfusion consists to find the
pressure fields p;, p, and the velocity fields u;, u, such that the flow problem is

K S _ .

-V. (;th) -I-L;Fv(]?z—PL)_fb (P¢» Pv) A =0 ing2, (2a)

w=-Svp, inQ, (2b)
m
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TR s fo (PyPv) =0 SEA, (2¢)
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where « is the hydraulic permeability of the interstitial volume, p is the blood viscosity and the
function f3 (p;, pv) 6a denotes the fluid flux leaking from the capillaries to the interstitial volume
and it is defined by,

N (Psr pv) = 27 RL, ((Pv — D) — a? (”5 _ff)) ) 3)

while the symbol §5 in (2a) is the Dirac measure located on A. For an appropriate dimensional
interpretation of (2a), we remind that § 5 is not a dimensionless function. According to its definition
fQ fopadx = f A fds, the dimension of 8 is [length] 2, where dx is a volume element in the
interstitial space with coordinate vector x. Equation (2c) represents Poiseuille flow on the capillary
network. Because the capillary bed is modeled as a one-dimensional network embedded into the
interstitial volume, the equations would be ill posed if the coupling between the two subregions was
considered pointwise [20, 21]. For this reason, the function f; (p,, py) is such that the capillary bed
is affected by the average of quantities in the interstitial tissue, calculated on a cylindrical surface
that represents the actual size of capillaries (see Figure 1 for a sketch). The average value of pressure,
velocity or concentration fields, denoted by general function g, over the real surface of the capillary
bed is denoted by

2w

.1
g(s) = R ), g(s,0)Rd0.

For a more detailed derivation of this model from the problem formulation where also the capillaries
are modeled as three-dimensional channels, we refer the interested reader to [16].

To model drug transport in the interstitial tissue, we assume that molecules are advected by
the fluid and diffuse in all 2. In addition, chemical species may be metabolized by the cells in the
interstitial tissue. The distribution of solutes in the interstitial tissue is also affected by the lym-
phatic drainage. According to the assumptions at the basis of the flow model, the effect of lymphatic
drainage on mass transport is described as a distributed sink proportional to LﬁF %( Pt — PL)Ct-



Mass transport in the capillary bed is modeled by means of advection—diffusion equations. As
shown in [19], the one-dimensional model for mass transport in the capillaries network can be
derived starting from the actual 3D advection—diffusion problem. The coupled problem, account-
ing for transport of chemicals from the microvasculature to the interstitium, consists to find the
concentrations ¢, and ¢; respectively, such that the general mass transport problem is

dc d dc 1 _ _
a—:+$((uv-l)cv—Dv 8;) =—mfc(Ptan>Ct,Cv) on A, (4a)
aCt

57+ V(e = DiVe) +me; + L§F§(p, — pL)er = fe (Py. poiCrocy) 84 in Q. (4b)
where D, and D; are the molecular diffusivities, in the capillaries and the interstitium, respectively,
assumed to be constant in each region. The rate of metabolization in the interstitium is denoted by
m. This parameter may in turn be a function of the concentrations, as will be pointed out later on
(see Table II for values and units). The function f. (p,, py, ¢:, cy) is a mass flux per unit length of
the capillary vessels, and it accounts for the mass transfer from the capillary bed to the interstitial
tissue. The concentration in the vascular network, c,, is defined as mass per unit volume; therefore,
the linear concentration is given by Ac,, being A = wR? the cross sectional area of a blood vessel.
In order to restore the dimensional homogeneity of (4a) and (4b), we divide all the terms of (4a) by
wR?. As aresult, the factor (wR?)~! multiplies the last term of (4a). We describe the capillary walls
as semipermeable membranes allowing not only for the leakage of fluid but also for the selective
filtration of molecules. Again, the Kedem—Katchalsky equations represent a good model for these
phenomena [25]. According to these equations, the flux of chemicals per unit surface across the
capillary walls is

Je = (1 —0)Jp(pt, pv)cey + Plcy —¢) onT,

where P is the permeability of the vessel wall with respect to solutes, Jj is defined in (1) and o
is the osmotic reflection coefficient. It quantifies the departure of the membrane behavior from the
case of ideal permeability. The symbol ¢;/, denotes the average concentration within the capillary
walls. It is defined as a suitable combination of the concentrations on the two sides of the walls [27].
In particular, we set ¢;/,, := wc; + (1 — w)c, where 0 < w < 1 is a weight that depends on the
Péclét number of the solute transport through the wall. Then, under the assumption that capillaries
can be modeled as cylindrical channels, the magnitude of the mass flux exchanged per unit length
between the network of capillaries and the interstitial volume at each point of the capillary vessels
is the following:

Je (Py pvsCrocv) = 27R [(1 —0)Jp (Py Pv) Crpv + P (cy _Et)] .

2.1.1. Boundary and initial conditions. The fluid dynamics and mass transport equations are not
complete yet. Before being solved, they must be complemented with boundary conditions on the
artificial sections that separate the domains €2 and A from the surrounding tissue. We model a sam-
ple of tissue that is able to exchange fluid and mass with the exterior. In addition, for the governing
equations that depend on time, we need to prescribe the initial conditions of the system. Only the
drug transport equations depend on time. The initial drug concentrations will be set to the basal
values, equal to zero.

For the prescription of boundary conditions on the capillary network, we have to define what
are the inflow and outflow boundaries. As shown in Figure 1 using different colors and arrows, we
denote by dA;, and dA,,;, the inflow and outflow sections of dA, respectively. We regulate the
flow by enforcing the values of the blood pressure at the extrema of the capillaries. As a result, we
prescribe the following conditions:

Pv=po+ ApondA;, and p, = po on dAous, ©)

where the total pressure drop Ap is computed to ensure that the average blood velocity in
the network fits with the measured values in healthy human microvasculature [16]. In order to model



the administration of the drug through the vascular system, we assume that a fixed drug concentra-
tion, denoted with ¢y mqax, is injected in the blood stream for a period of time ¢ € (0, 7). We then
enforce

Cy = Cymax if t € (0,T), ¢, = 0 otherwise, on dA;, and % =0 on A,y 6)
On the outflow boundary of the network, we constrain the derivatives of the drug concentration,
rather than the value itself. As a consequence, the concentration value is determined by the model,
on the basis of the convection and reaction mechanisms.

The interstitial tissue, €2, is assumed to be an isotropic material. To comply with this property, we
enforce on all the artificial interfaces of the tissue, 0€2, boundary conditions that mimic the resistance
of the surrounding material. For the fluid dynamics equations, these conditions are discussed in
detail in [16] and read as follows:

- Evpt ‘n = Bp(pr — po). (7

where n is the outer unit normal vector of the interstitial boundary, pg is the basal (atmospheric)
pressure and S, is a parameter inversely proportional to the resistance of the surrounding tissue.
Equation (7) is very general. When f;, — 0 it corresponds to infinite resistance. In this case, the fluid
flow cannot cross the boundaries of 2. Conversely, large values of B, (asymptotically 8, — 00)
correspond to enforcing p; = po on the boundaries. The sensitivity of the solution with respect to
B» and suitable expressions to calculate it on the basis of the other model parameters are provided
in [16]. We proceed analogously for the transport of solutes by setting,

— D,VCt ‘n = IBCCz, (8)

where . quantifies the permeability of the outer tissue with respect to solute transport. Here, we
have implicitly assumed that the basal solute concentration is equal to zero. The values of S5, B¢
used in the simulations are reported in Tables I and II, respectively.

2.2. Coupled system of O, and tirapazamine

Hypoxia targeted drugs, such as tirapazamine (TPZ), are designed to be metabolized more quickly
by hypoxic cells. The distribution of such drugs in the interstitial tissue then depends on the local
availability of oxygen. Mathematical models and simulations have already been applied to study
these effects [2]. The objective of this section is to adapt the single-specie mass transport model
developed above to the case of multiple solutes, in order to reproduce the study presented in [2],
with a more detailed mathematical description.

We study the distribution of the oxygen concentration, denoted by c°*. Because oxygen is
persistently supplied by the capillary bed, we rely on the steady problem formulation. Oxygen dis-
tributes into the interstitial volume thanks to diffusion and transport. The rate of oxygen absorption
depends in turn on the oxygen concentration profile itself. This dependence is represented by a
Michaelis—Menten formula [25],

ox
my

M) =

©)
where m{* represents the maximal oxygen demand, that is, the rate of oxygen consumption when
oxygen is not limited, and c§* is the oxygen concentration at which the reaction rate is half of mg*.
Let us now denote by c’?? the concentration of TPZ. This is a relatively small molecule that obeys
to the governing equations of mass transport described in (4a). Following [2], the consumption rate
of TPZ depends on the oxygen concentration through the following expression

Ctpz
tpz (,0X\ _ ,,IPZ 0
m (Ct )_mO CZPZ +cox’ (10)
0 t



where mlop % is the metabolization rate when TPZ metabolism is not limited by the oxygen con-

centration, and c(t,"J % is the oxygen concentration at which the consumption rate for TPZ is halved
compared to that under anoxia. According to Table II, the dimensions of the metabolization kinetic
terms m°* (c?*) and m'P% (c¢{*) are [rime]™", which make them match with the other terms of
(11a) and (11b), respectively. ) ) )

The general mass transport model (4), adapted to the previous assumptions, ends up with the
following equations,

dcyx S

o + V- (c?%a; — D*VPY) + mO* (ef¥) ef* + ngFV(pt —pr)ed*
= f% (Ds, v, T7%,¢9%) 8A inQ, (11a)
aCttpz tpz tpZg 1Pz tpz (,0X\ NIPZ LFS tpz
o +V'(Cz uy — D{P* Ve ')—i—m (ef*) e+ Ly V(PI_PL)C} '
= 127 (Brs po TP % 1) 8 inQ, (11b)
ach 8 ox ox a ox 1 00X (55 —0X ox
5 + s (ay - A)c9* — DY o) = —mfc (P> Pv,c?%,c5%) on A, (llc)
actPc 9 3 1 _ _
(’;Jt + s ((uv “A)elPE — Déngcfjpz) = flre (pt,pv,cipz,cfjpz) on A, (11d)

where the flux of the specie * = ox, tpz across the capillary wall is defined by the function,
fc* (ﬁt’ pv,E?,C:) =2nR [(1 - 0*)LP ((pv — D) — o? (7[5 _ﬁtp)) ct*/u + P* (C: _Et*)] .

2.2.1. Parameters of the model. We apply the coupled oxygen-TPZ model, namely (11a)—(11d),
to calculate the time and space dependent concentration profiles of TPZ in the interstitial volume,
after a bolus injection of TPZ equal to C,t,,’:fx for a duration of T}, = 20 min. The numerical
simulation is however extended for a longer time interval. As a result, we enforce the following time
dependent boundary condition for TPZ, ci* = CPZ, fort € (0, Tyax) and ¢P% = 0 for t > Tyax
on dA;,, while we assume that oxygen is flowing steadily into the tissue sample, according to the
boundary condition ¢%* = C2%_ on dA;,. The values of Cyls and C2% . are shown in Table II.
In particular, C.7 . is set to the value of saturated blood, which corresponds to an oxygen partial
pressure of 100 mmHg. The parameters needed to feed the fluid dynamics, and the mass transport
equations are taken from different sources, reported in Tables I and II. In particular, we observe
that for DJ* and DiP*, we do not refer the reader to previously publishes studies, because the
estimate of these parameters needs a special discussion. Concerning the diffusivity of oxygen in the
blood stream, DJ*, the value of Table Il is significantly larger than the usual diffusivity for oxygen
transport in arteries. Indeed, in [29], the authors and coworkers have used DJ* =~ 107> cm?/s.
Diffusion of oxygen was on purpose augmented in the present work in order to compensate for the
role of red blood cells and in particular for the additional oxygen available because of the exchange
of dissolved gas and hemoglobin-bound oxygen. Because we cannot model this interaction using the
mass transport (4), we take it into account approximately by augmenting the oxygen diffusivity. This
is an alternative way to increase the availability of oxygen in the capillary network. The magnitude
of the augmented oxygen diffusion coefficient was determined by an heuristic approach consisting
in the comparison of our numerical simulations with the ones reported in [17] (see in particu-
lar Figure 3), where the oxygen concentration maps in the interstitial tissue are calculated for the
same vascular geometry of this work, but using a different oxygen transport model accounting for
hematocrit discharge and hemoglobin saturation.

Concerning TPZ, the value of D% shown in Table II is based on the combination of Stokes—
Einstein equation with the available diffusivity of TPZ in the interstitial volume and the diffusivities
of oxygen. More precisely, given the Stokes—Einstein model,

KpT
D=2
6mur

(12)



where r is an estimate of the molecular radius, kg7 is the Boltzmann thermal energy and u is the
viscosity of the solvent, we assume that it is adequate to estimate oxygen and TPZ diffusion in the
blood stream and the interstitial volume. As a result, the following proportion holds true

ox
D'U

1904

DPz = piP 2
v t ox

Dt

We observe that the augmentation factor discussed for oxygen applies to the diffusivity of TPZ in
blood as well. To assess the sensitivity of the computational results with respect to the magnitude of
DIP* | we have performed an additional simulation of the TPZ concentration maps in the capillary
network and in the interstitial volume using D’* = 6.926 x 10~® cm?/s, which is decreased of two
orders of magnitude with respect to the value of Table II. The corresponding results (not shown)
were compared with the ones obtained with D7? = 6.926 x 10~* cm?/s. This analysis confirms
that the magnitude of DIF? only mildly affects the concentration maps in the interstitial tissue,
essentially because the distribution of TPZ in the capillary network is transport dominated.

Before proceeding, we aim to use the available data to verify the assumption that the contribution
of oxygen and TPZ to the oncotic pressure is negligible. This hypothesis has already been widely
investigated for oxygen, [27, 30], and it results to be accurately satisfied, because oxygen is a very
small molecule. For TPZ, the question remains open. An upper bound for the oncotic pressure
generated by TPZ dissolved in blood is 7,5 = 0P Ry T C,E;. The main issue is the quantification
of the reflection coefficient o’?%. According to [24, 25, 27] and using (12), this parameter can be
estimated as

r’PZ 2 2 kBT
o't = 1—(1——) and r'P* = ———
ypores 6JTMDtp

where r’PZ is an estimate of the 7P Z molecular radius and r?°"¢ quantifies the average dimension

of the endothelial fenestrations in the capillary walls. For the latter, following [27] and references
therein, we take r?°7¢ = 5 x 10~° m. For the former, we use the Stokes—Einstein equation to
approximate the TPZ radius using the molecule diffusivities, provided in Table II. This results in
the following upper bound for the TPZ radius r’7* < 3 x 107! m. When we compare this estimate
with the Bohr radius (the most probable distance between the proton and electron in a hydrogen
atom), it turns out that one TPZ molecule should span approximately over 5 radii, which seems
to be appropriate for the molecule, whose chemical formula is C7 HgN4O;. Using the available
estimate for r’P%, we obtain 6'?% < 0.013, which completely justifies our assumption. Indeed, the
corresponding oncotic pressure is n,ﬁfazx = g'prz RgTC,t,ﬁfx < 0.08 mmHg. This value is almost
negligible with respect to the oncotic pressure gradient induced by the blood proteins that amounts
to 25 mmHg.

2.3. Transport of nanoparticles and drug delivery

Nanoparticles are used as vectors for the delivery of drugs to the tumor tissue. The advantage of this
technology with respect to systemic delivery is that chemotherapy agents are released selectively to
the tumor mass [31]. The side effects of drugs on patients health are thus reduced. We aim at mod-
eling the transport of nanoparticles in the capillary network and the consequent delivery of a drug,
which in our case is again TPZ, to enable comparisons with the bolus injection delivery method. A
large variety of cancer treatment methods based on nanoparticle delivery is available or under devel-
opment [32]. Thanks to its generality, the computational model could be adapted to describe many
of them. Here, we focus on modeling drug delivery from particles designed to travel the vascular
network and selectively interact with particular receptors on the capillary walls. Mathematical mod-
els describing these phenomena have been recently proposed, we refer to [33, 34]. They are based
on similar concepts. In the former study, nanoparticle adhesion to tumor vasculature is addressed.
The latter one is devoted to study the interaction of nanoparticles with the coronary arteries, in
presence of regions affected by inflammation. Our model arises from the general equations of blood
flow and mass transport, with some modifications. In particular, it has to be adapted to account



for three different stages of the delivery process: (i) the transport of nanoparticles in the capillary
network; (ii) the adhesion of the particles to the capillary wall, adopting the framework proposed in
[33, 34]; and (iii) the delivery of the encapsulated drug to the surrounding tissue. Given the moder-
ately short time scales addressed in the forthcoming numerical examples, as well as the complexity
of the biological phenomena involved, many of which are not completely understood yet, we do not
consider modeling of nanoparticles extravasation and migration into the interstitial volume.

Steps (i) and (ii): nanoparticle transport and adhesion. The model accounting for nanoparticle
transport in the blood stream and their adhesion to the wall results in the following equations:

%+%((UU-A)CU—DU%) +%HCU =0 inAx(0,T), (13)
where ¢, (X, t) is the nanoparticle concentration inside the vessels and it is measured as number of
particles per unit volume [f//m3]. The adhesion of particles to the wall, which was not accounted in
the general model, is described as a sink term distributed along the length of the capillary network,
namely I1c, on A. The new term Ilc, is a flux of particles sequestrated to the flow per unit surface
of capillary wall. Because we consider a one-dimensional model along the capillary axis, we use the
corresponding flux per unit length 2w RI1c,. The sink term, per unit volume, equivalent to this flux
is then obtained by scaling the flux per unit length with the vessel cross section, that is 7R?. The
vascular deposition parameter, IT, is estimated using a ligand-receptor model for the interaction of
particles with the endothelial layer. In particular, we use the model setting of [34]. For the sake of
completeness, we report here the main components of the model. The vascular deposition parameter
is defined as

d
I(s) = Pa|S(s)|7”, (14)

where P, is the probability of particle adhesion, S(s) is the wall shear rate and d, is the diameter
of the considered nanoparticles. Given the plasma viscosity u, the wall shear stress at the axial
coordinate s along the capillary network is S (s). As a result, we compute the wall shear rate using
the Poiseuille’s flow equation. To this aim, we remind that the network A can be decomposed into

individual branches A;,i = 1, ..., N. Then, the shear rate assumes a constant value on each branch
given by
R |A;
1S;| = — m
Z/L L;

where |A; py| is the absolute value of the pressure drop along each branch of the network and L; is
the branch length. The probability of adhesion, P,, is in turn defined as a function of particle size,
shape and surface properties,

Pa(s) = legazytrgexp (—ﬁ@) . (15)
2

In the above expression, m; is the surface density of the ligand molecules that decorate the nanopar-
ticle surface and K? is the affinity constant of the interaction between ligands and receptors. The

parameter o, defined as
A \2
= 1—(1- 16
@ ’"{ ( dp/z)} 1o

is a function of the density of receptors on the endothelial surface, m,, and of the separation distance
between the particle and the substrate at the equilibrium, A. The parameter ry represents the radius
of the adhesion point and f = % is a constant, where A is a characteristic length of the ligand-
receptor bond, F is the coefficient of hydrodynamic drug force on the spherical particle and kg T is

the Boltzmann thermal energy.




The model must be complemented by suitable initial and boundary conditions. At the inlet dA;,
we prescribe a Dirichlet boundary condition cg, which represents the amount of injected particles.
At the outflow dA ,,,; we specify a homogeneous Neumann boundary condition. We assume that the
blood stream does not contain any particle at the initial time.

Once the problem for particle transport and adhesion is solved, we compute the density of
nanoparticles adhering per unit surface to the wall as

(s, t):= -/Ot TI(s)cy (s, T)d T.

Step (iii): drug release from nanoparticles. The particles decorating the capillary wall are loaded
with drug, and they are able to release it to the surrounding tissue. Observing that the particles
are in direct contact with the capillary wall, we assume that the drug release rate to the interstitial
volume per unit capillary surface is determined by the combination of the flux delivered by a single
particle with the density of particles adhering to the wall. Determining the release profile of a single
(spherical) loaded particle is a well studied problem in pharmacology [35]. Here, following [35-37],
we define it using a power law model with saturation,

gty _ 1 0
q— = m, Joo = C:;anp, then ¢(t) = mC;anp, (17)
00

where ¢(¢) is the amount of drug released and ¢ is the total drug load of a nanoparticle, given
by the total drug concentration inside the nanoparticle, c; » (wWhere % denotes an unspecified drug
loaded on the particles), multiplied by the nanoparticle volume V},,. The saturation parameter Y
is expressed in dimensions of [time]?. The two parameters Y and b reflect the structural and
geometric properties of the delivery system. The drug release rate from a single nanoparticle is
therefore obtained as

dq(t Y-b-tb!

Inp(t) = dr (lb—i—T)Z np¥np>

and the total drug release rate per unit surface is computed as,
J(s,t) = Jnp(t)¥(s,1),

where W (s, 1) is the density of nanoparticles adhering per unit surface to the wall.

To conclude, we apply the immersed boundary method to describe the capillary bed as a source
term concentrated on the centerline A. More precisely, the action of drug loaded nanoparticles on the
interstitial tissue is described by the source term 2w R J (s, t), assuming that the capillaries are cylin-
drical channels of radius R. To compare the nanoparticle delivery approach with the bolus delivery
strategy previously considered, we load the particles with TPZ. The drug concentration into

the tissue is modeled by the following equations and Robin (Neumann for 8, = 0)
boundary condition:
acztpz tpz Pz D2 tpz (.0x\ tPZ
o + V- (¢ %, — DV ) + m'PE () ¢
S
—I—LéFV(pt — pr)elP* =27RJI(1)84 inQ x (0,71, (18a)
DAV om = B (e — cfF) ond2 x (0, T]. (18b)

2.3.1. Parameters of the model. The nanoparticle transport and adhesion model requires to char-
acterize several parameters, for which we refer to Table 1 in [34]. Furthermore, it is possible to
calibrate the power law model in order to describe different scenarios, for example a fast release
mechanism or a slow release rate. We fix the parameters of the model, Y and b, such that 90% of
the total drug is released within one day. The parameter values characterizing particle adhesion and
drug release are reported in Table III.



Table III. Physical parameters used to model nanoparticle injection and adhesion [34].

Symbol Parameter name Units Value Equation
Dy Nanoparticle vascular diffusivity cm?/s 6.98 x 1072 (13)
dp Nanoparticle diameter m 2x 1076 (14)
B — N1 2.39 x 1011 15)
an — fi/m2 3.4 x 10° 15)
m;K2r2 — m2 1.2585 x 1072 (15)
b Power law exponent — 0.8 17
T Power law saturation parameter hours? 1 17
cob. Inflow nanoparticle concentration fi/m3 1.4354 x 1012 19)

Another important quantity is the concentration of nanoparticles injected at the inflow of capil-
lary network. Because we are interested in comparing the amount of TPZ delivered from bolus and
nanoparticle injection, we aim at determining the concentration of injected nanoparticles that match
the TPZ bolus concentration, previously defined as L. Similarly, the concentration of injected
nanoparticles will be denoted by C,%, and its value is determined according to the following
balance equation:

CIP P2y, = CIPZ (19)

max-np max-*

To determine the value of Cp5 ., we need an estimate of the amount of drug cast in each particle,
namely cf,’;,z. To determine this value, we rely on two assumptions: (i) the drug mass fraction in each
particle, denoted as f*P%, is equal to the unity and (ii) the density of the particles is comparable to
the density of water, p,,. As a result, we conclude that

tpz __ tpz
Chp = Pw f

and we compute the value of C,5, that is reported in Table III.

2.4. Computational methods

For complex geometrical configurations explicit solutions of problems (2), (11) and (18) are not
available. Numerical simulations are the only way of applying the model to real cases. The dis-
cretization of the flow problem (2) is described in [16], and it is achieved by means of the finite
element method that arises from the variational formulation of the problem combined with a parti-
tion of the domain into small elements. We follow the same method also to discretize problems (11)
and (18). More precisely, starting from the problems of oxygen and TPZ mass transport, we mul-
tiply (11a) and (11b) for a test function ¢, € V; = H}(Q), where H}(Q) with a € (0, 1) is the
natural trial space for the problem in the interstitium, as discussed in [16] and references therein.
We integrate over €2 and the transport operator is treated using integration by parts combined, for
the sake of simplicity, with homogeneous Robin conditions (18b) on 92 (Neumann conditions will
be also addressed in the simulations). Regarding the interface flux term, we write

(f&" (Prv po-Tr)) 8nnde)g = (£ (e Po.TF 7)) -

where (-, -}y, denotes the standard inner product in L?(X) and the generic set ¥ stands for either
or A. We proceed similarly for the governing equation on the capillary bed. Integrating by parts on
each branch A; separately, it is possible to manipulate the resulting equations in order to naturally
impose the mass conservation at each node of the network, see [16] for details. This property is
satisfied provided that the test functions of the pressure field on the capillary bed are continuous on



the entire network, namely ¢, € C°(A). In particular we choose V; o as the subspace of H!(A) of
functions which vanish on the boundaries of A and therefore V, o C C°(A) on 1D manifolds. This
allows us to obtain

dcy dcy 0 1
< > —|—<(uv -A)ey — D Clv> —< Y (Pypu.ClCl) g > , Yqy € Vyo.
A A

a ds " s 7R? N

Then, the weak formulation of (11) requires to find ¢/ € V; and ¢ € V, o with x = ox, tpz
such that,

0
() an (67 a0) = b (cF.) = iy (c5.41) . a € Vi 200
Q
8 *
< actv 7CIU> + ay (C;%)) - b})\ (C:JIU) = b;)\ (E?QC) , Yqe € Vyoo, (20b)
A

with the following bilinear forms,

S
= (C u; — DI*VC,*, Vf]t)gz + (m* (Cfx) C:J]t)g + LII;FV ((pe — PL)Ct*,fIt)Q
E)c;‘ qu>

Dy ds ~ 0s

(ZnR[(l—o )Lp ((po = D) — 0P (2 =77)) (1 = w™)ey + Pej] . qc), .
(27TR [(1_0 )Lp ((Pv Py —o? (775_7;7))1” & —P E:] qt)A’
={2/R[(1=0")L, ((py = 7)) —0? (2 = 7)) (1 —=w )ey + P ;] qe)y -
= v

2/R[(I_O')L ((Pv_ﬁt)_ap(n _Ef)))wct_Pct]’qt)A

We proceed in a similar way also for (18). The variational problem for nanoparticle transport and
TPZ delivery requires to find ¢;”* € V; and ¢, € Vj o such that

dclP*
<#,q, a7 ) = F (). Vg, € Vi, C1a)
Q
dc
<8_tv’ QU> + af}pZ(cv’ qv) =0, Ygc € Vyo (21b)
A

and the bilinear forms are
0l (clP%, q7) 1= (clP%u; — DIPEVEP Vgp)g + (m'? (c2%) ¢, q1)q
S
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F(1) == 2nRJ(1). 41) o

Ilcy,q — v> s
A

For the spatial approximation, we first introduce an admissible family of partitions of €2 into
tetrahedrons K € 77’, where the apex /1 denotes the mesh characteristic size. For the discretization of
the capillary bed, each branch A; is partitioned into a sufficiently large number of linear segments E,
whose collection is Al’-’, which represents a finite element mesh on a one-dimensional manifold. Let
Al = UIN_1 Ah be the finite element partition of the entire capillary bed. At the discrete level, one of
the advantages of our problem formulation is that the partition of the domains €2 and A into elements
are completely independent. The computat10nal meshes used to solve the transport problems are

reported in Figure 2. Let V' := {v e C%Q): v|g e PI(K), VK € Th} be the space of piecewise
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Figure 2. On the left: meshes used to solve problems (23), (24) and (25). The partition of the domains €2

and A into elements are completely independent. In particular, the partition of €2 is composed by 32,624

elements, while the partition of A is composed by 8400 nodes, 80 nodes for each branch. On the right:

computational time for solving the algebraic systems of the flow equations, the oxygen transport problem

and the TPZ mass transport problem for the two different modalities of delivery. We represent one sin-

gle time step for the solution of the TPZ transport problem. The bars quantify the CPU time measured
in seconds.

linear continuous finite elements on 77‘ and let Vvhi = {v € CO%A;) : v|g e PY(E), VE € Af“}
be the piecewise linear and continuous finite element space on A;. The numerical a(proximation

N h
Ul vE) N

of the equation posed on the capillary bed is then achieved using the space Vvh = i

CP(A). The discrete problems arising from (20) and (21) require to find ct* e Vth, co e Vv}fo and

%M ¢ yland ch e VI, such that

de;" h o,
#yqzh +at (Ct*’ 7q1{1)_bj\h (C:" ’ql{/l) :bzh (C:’thil)v Vq[h € I/thv (223)
Q

ac*,h ek
i) an (e al) ok (e ab) = b (7" al) . Vel € Vo, @20)
A

defPe h t tpzh h h h
) +a (P gt) = F(). Vgl eV (23a)
Q
dey tpz (. h h h
Lo} +ape(chal) =0, V! e v, (23b)
A

where the bilinear forms a; (-, -), @y (--), bA" (-.+), a'P*(-,-), a'P*(-, ) are the same as before, with

the only difference that pA" (-, -) is now defined over the discrete representation of the network Aj.
The interpolation and average operators, which are needed to evaluate the bilinear form pA" ,"),
are described in [16], and the error analysis of the present scheme can be addressed with the tools
provided in [20].

The space discretization must be complemented with a time advancing scheme. For the numerical
approximation of the variational problems (22) and (23), we consider a standard backward Euler
time advancing method. Let At > 0 be the time step, t, = nAt the n-th time point, and ¢, hn e

VI, ex™™ e VI | the numerical approximations of ¢;"(1,) and ¢} (t,). As a result, we obtain

the following discrete problems: given ¢*"" € v} and cphn ¢ Vi, find ¢/ hntl o v/ and

cphntl ¢ V. such that



<Aitct*,h’n+l’q;l>ﬂ ta (ct*,h,n+l’qth> . bi\h (Cz_*’h’nﬂwlth)

= <A%ct*’h’",qﬁ’>g + bl (e gl ) vl e v, (24a)
<Aitcj’h’n+l"11}f>A + ay (C:,h,n-i-l’qll)z) — b, (C;k,h,n-f-l’ql})z)

- <éc:,h,n,q5>1\ o, (Cz—*,h,n-i-l’qlf}l), Vgl e V1. (24b)

An equivalent approach is applied to discretize (23).

Finally, we observe that the equation which describes the oxygen concentration transport, (11),
involves a nonlinear term, represented by the Michelis—Menten reaction formula. To solve the prob-
lem, we apply an iterative scheme strategy, where the oxygen concentration is evaluated at the
previous iterative step. For simplicity of notation, to address this iterative scheme, we drop the time
index n + 1. This index will be explicitly indicated only when referring to a time step different than
tn+1. For the same reason, we drop the index % everywhere. Then, foralln = 1,..., N given an ini-
tial guess ¢*°, ¢5* and a tolerance ¢, the iterative strategy consists to find a sequence 7>, ¢g**
fork = 1,2,... such that,

1
<—cfx’k, qt> + (c,ox’ku, — DOV ek, Vq,>g
Q

J—1 K S )
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Q
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1
<Ec3x,k’%>A + ay (ch,k’qv) — b2, (ch,k’qv)
1 _
= <Ec3x,k,n’qv> + bxh (C?x,k’ qv) s qu S Vv}fo, (25b)
A

until the following stopping criterion is satisfied:

C;)x,k _ c;)x,k—l H ng,k _ ch,k—l H
0 4+ ¢ <e, (26)
ox.k ox.k
i i
0 0
where || - ||o is the Euclidean norm of the vector of nodal values.

Regarding the coupling between the oxygen and the TPZ concentration, we actually solve the steady
counterpart of (24) for the oxygen transport, because oxygen is persistently supplied by the capillary
bed. Therefore, once computed the oxygen concentration profile, we use it to determine once for
all the reaction term that appears in the TPZ transport equation. This choice seems to be reasonable
also because there isn’t any feedback of the TPZ concentration on the oxygen consumption.

For the numerical solution of problems (25), (24) and (23), we use GetFem++, a general purpose
C++ finite element library [38]. The discretization of flow problem (2), already described in [16],
is solved applying the GMRES method with incomplete-LU preconditioning. The tolerance for the
stopping criterion for the iterative method to solve the oxygen transport (25) is fixed to ¢ = 1078,
We reach the convergence in 61 iterations. At each iteration, we apply the GMRES method to solve
the corresponding linear systems. Regarding the TPZ transport, the monolithic algebraic system
constructed from (24) is again solved using the GMRES method with incomplete-LU precondition-
ing. Conversely, the two equations composing system (23) are actually decoupled, therefore they are
addressed in sequence: we solve the vessel (23b) first, in order to compute the flux J(¢), which is



Table IV. Computational time for solving different parts of problems (23), (24)
and (25). Computational time is measured in seconds.

Task Bolus injection  Nanoparticle release
Problems initialization 301.7 301.59
Assembling fluid system 1.02 1.04
Solving fluid system 5.62 5.39
Assembling O system 1.32 1.35
Solving O system 61.36 60.86
Assembling drug system 1.37 1.48
Solving drug system (one single step) 1.2 0.21
Solving drug system (7" = 20 min) 3374.04 1231.24

the forcing term of the tissue (23a). Because these equations are independent, their numerical solu-
tion turns out to be faster than the one of system (24), as we observe from the results reported in
Figure 2 and in Table I'V.

Examining the coefficients of Table II, we observe that in (11) reaction terms dominate in the
interstitial tissue. For this reason, we adopt the mass lumping stabilization techniques addressed in
[39], while numerical experiments confirm that resorting to stabilization methods for the convective
terms is not required for the applications that will be addressed here.

3. RESULTS AND DISCUSSION

The delivery of anticancer agents mediated through nanoparticle injection in the blood stream fea-
tures significant advantages with respect to the traditional drug bolus delivery, because it increases
the permanence of drug available in the systemic circulation [32]. We aim to explore the potential
of the proposed simulation framework to capture these effects.

3.1. Indicators of drug delivery performance

The concentration profiles in the vessels, ¢, (¢, s), and in the tissue, ¢;(z, x) are the natural outputs
of the mass transport model described so far. From the clinical standpoint, these may not be the
most significant indicators of the treatment performance. For this reason, we also study the amount
of TPZ metabolized by cells up to a given reference time. We denote this quantity as M ?%(z, x). In
addition, for more quantitative comparisons, we look at the total amount of TPZ metabolized in the
considered portion of tissue, that is M (). On the basis of the Michaelis—-Menten metabolization
kinetics adopted in (11), these indicators are defined as

—itpz

t
M”’Z(t,x)=/ m'P% (c0*(z,x), P (r,x))dr, M (z):/ M™%(t,x)dx.
0 Q

Following [2], the amount of drug metabolized in the tissue can be related to the cell survival. In
particular, the cell surviving fraction (SF) represents the complement of the fraction of cells treated
(killed) by TPZ with respect to the number of control cells (the total number of cells in the tissue,
before treatment started). Several models are available to quantify the surviving fraction [2]. In
particular, we use

SF(t,x) = exp (—aM™*(t,x)),
where « is a phenomenological coefficient. For the following calculations we assume o = 2.52 X

10~4uM~1(0.0014g/m>) as in [2].

3.2. Oxygen transport and TPZ delivery from bolus injection

We analyze the simulations of oxygen and TPZ transport obtained with model (11). In Figure 3,
we compare the oxygen and the TPZ concentrations 20 min after that the delivery of TPZ into the
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Figure 3. Oxygen concentration profile, bolus delivered TPZ concentration profile and metabolized drug

profile are visualized from left to right. On the top row, simulations are performed using Robin boundary

conditions for the concentrations of oxygen and TPZ at the boundary of the interstitial volume with the
exterior. The results obtained using homogeneous Neumann conditions are depicted below.

systemic circulation has started. Oxygen concentration pattern substantially depends on the den-
sity of capillaries per unit volume. Regions of the sample tissue not well perfused by the capillary
network show low oxygen concentrations, justifying the risk of hypoxic conditions for an irregu-
lar configuration of the microvessels. This conclusion is also supported by the dimensional analysis
of the governing equations. Because oxygen transport in the interstitial volume is reaction domi-
nated, regions free of oxygen sources will easily experience low oxygen supply. The visualization
of oxygen concentration maps of Figure 3 can be directly compared with the results of [17], see in
particular the top row of Figure 3, obtained using an equivalent model for oxygen transport. As a pre-
liminary and qualitative validation of our results, we observe that the contour plots of the calculated
oxygen concentration look remarkably similar in the two cases. As expected, the TPZ concentration
is significantly influenced by the distribution of oxygen concentration. The distribution of TPZ in
the considered tissue sample seems to be more uniform than in the case of oxygen.

In spite of the difference between the governing mechanisms at the basis of oxygen and TPZ
transport, the simulated concentration maps of these species share common traits. This may be
explained by two concurrent factors. On one hand, both solutes are affected by the distribution of
capillaries. On the other hand, the metabolization of TPZ increases in hypoxic regions. This effect
sustains TPZ concentration gradients similar to the ones of oxygen, by turning off TPZ absorption
where oxygen concentration is elevated, and promoting TPZ metabolization where oxygen is low.
Finally, the inspection of metabolized TPZ, namely M 'P%(¢, x), shows that the objective of reaching
the hypoxic regions with a chemotherapy agent is substantially achieved, see Figure 3 (left). More
precisely, oxygen and M'P%(¢, x) maps show a complementary pattern. It means that most of TPZ
is metabolized in hypoxic regions.

Before proceeding, we study the sensitivity of these results with respect to the boundary con-
ditions applied on the artificial sections separating the interstitial volume from the exterior. The
simulations reported in Figure 3 (top row) are obtained using —D;V¢; - n = B.c; where the value
of B, is reported in Table II. We compare these results with Figure 3 (bottom row), showing the



concentration maps when homogeneous Neumann conditions (no flux) are prescribed for the con-
centrations on the boundary of 2. This is equivalent to set 8. = 0. A slight increase in the TPZ
concentration field is observed, in agreement with the fact that the outgoing diffusive flux is set to
zero with the choice 8, = 0. For a more quantitative comparison, we study the sensitivity of the
total amount of metabolized TPZ, M (). After injecting TPZ for 20 min, we calculate M (r) =
7.76838 x 10~°g/m> when using Robin boundary conditions and M (1) = 8.6685x 10~2g/m> in
the case of Neumann conditions. Owing to these results, we conclude that the parameter S is not
a factor of primary importance to determine the concentrations of oxygen and TPZ and we will use
Robin conditions for all the forthcoming simulations.

3.3. Nanoparticle adhesion patterns and delivery of TPZ from nanoparticle injection

We split the analysis of the TPZ delivery from nanoparticles in two parts. First, we focus on the
nanoparticle adhesion model, with the aim to validate our results with respect to the ones reported
in [34]. In a second phase, we analyze the concentration of TPZ delivered from the nanoparticles
that decorate the capillary walls.

Nanoparticle adhesion is regulated by the vascular adhesion parameter I, which in turn depends
on the shear rate arising from the interaction of blood flow with the capillary walls. These two
quantities are depicted in Figure 4. We observe that the wall shear rate features a significant spa-
tial variation, although the capillary radius is constant along the network. This effect is due to the
variable pressure, and consequently variable flow rate, along the network. We observe that the cal-
culated values of wall shear rate fall in the physiological range [34]. According to the adopted
adhesion model, the variability of wall shear rate is propagated to the adhesion parameter, reported
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Figure 4. Top panel: Capillary network profiles of wall shear rate (WSR) and vascular deposition parameter

IT. Bottom, starting from the left: the density of nanoparticles decorating the wall normalized to the injected

value, W, at 20 s and at 20 min after nanoparticle injection has started. These values refer to a nominal unit

concentration of injected particles (1/m>). Bottom right: W at 20 min after injection for an inlet nanoparticle
concentration equal to Cpib ..
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Figure 5. TPZ concentration maps at 20 s and 20 min after starting nanoparticle release (left and central
panels). On the right, we show the metabolized drug after 20 min. Robin boundary conditions are used in
all cases.

on Figure 4 (left). As a result, we expect to observe a nonuniform concentration of nanoparticles
adhering to the wall.

The nanoparticle density per unit capillary surface, namely W(s, ¢), depends on the adhesion
parameter and on the particle concentration traveling through the vascular network. A preliminary
validation of our simulations arises observing that the nanoparticle density per unit capillary surface,
calculated for an injection phase lasting 20 s, is comparable to the one reported in [34]. To compare
the delivery of TPZ from nanoparticles with the case of bolus injection, we consider a constant
concentration of injected particles for 20 min. The analysis of adhered particles at 20 min after the
initial time, shows that adhesion progressively increases. The results of Figure 4 (left and middle
panels, bottom row) refer to the concentration of adhered nanoparticles normalized with respect
to the injected value. On the right, we show the density of adhering particles when we consider
the initial particle concentration Cph, which is calculated in order to match the total flow of TPZ
already used in the case of direct bolus injection.

Figure 5 shows the TPZ concentration delivered from nanoparticles at 20 s and 20 min after
particle injection has started. Although the concentration levels are significantly different in the two
cases, because of the time scales, the concentration maps share some similarities. In both cases,
however, the geometry of the network cannot be immediately related to the TPZ concentration map.
Indeed, it is rather the distribution of the adhesion factor along the network, I, that affects the
calculated concentration field. Finally, the amount of metabolized TPZ shown in Figure 5 (right)
seems to be rather independent from the previous factors, but mostly influenced by the oxygen
concentration field.

3.4. Comparison of TPZ delivery from bolus and nanoparticle injection

The proposed model enables us to compare how the concentration of delivered drug varies in space
and time for the two considered modalities of drug delivery. We also point out that, although the
delivery pathway is different, the comparisons refer to the same amount of drug injected into the
system.

In Figure 6, we visualize the TPZ concentration maps in the two cases, reported at 20 min, 40 min
and at a final times comparable to the time at which there will be no longer drug to be delivered.
The magnitude of the end time may differ in bolus and nanoparticle injection. The first time point
corresponds to the instant when the injection of drug or particles into the vessels is turned off. The
analysis of the results reveals some differences since the beginning of the delivery process. The drug
concentration in the case of nanoparticle delivery is larger than the one of bolus delivery at all time
points and the discrepancy increases with time.

Figure 6 also shows that the concentration of TPZ delivered from bolus injection rapidly vanishes
after the injection is switched off. At 40 min after the injection has started, there is only a negligible
trace of TPZ in the tissue, while after 6 h the drug has completely vanished. This is clearly due
to drug metabolization. Surprisingly, TPZ drug concentration from bolus delivery is also lower at
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Figure 6. Comparison of TPZ concentrations released from bolus injection (top row) and nanoparticle
injection (bottom row).

the first time point. The superior performance of the nanoparticle delivery system on the short time
scale can be justified by the role of nanoparticle adhesion. This effect helps to harvest drug from
the blood stream and to store it on the capillary walls. As a result, drug may be delivered in higher
concentrations to the interstitial volume and at the same time a lower fraction of the injected drug is
washed away by the blood stream leaving the tissue sample.

In addition, the release rate from nanoparticles is more persistent. Drug will be delivered to the
tissue over a period of time that is significantly longer than 20 min. This is due to the nanoparticle
porous matrix, which represents a diffusional barrier to drug release. In this case, delivery and
metabolization rates nearly balance, because the TPZ concentration in the interstitial volume slowly
decreases for a period of almost 48 h. This interpretation is supported by the visualization of the
timecourse of the total drug amount available in the tissue, namely the volumetric integral of the
TPZ concentration, reported in Figure 7. These results further highlight the inefficiency of drug
bolus delivery when compared to drug delivery from nanoparticles.

The model suggests that bolus injection turns out to be a sub-optimal delivery strategy for two
reasons. On one hand, tissue drug concentration rapidly reaches a plateau, much before the final
injection time. The drug injected during this plateau phase is more likely to be washed out by
the blood stream. On the other hand, the bolus injection system lacks of any buffer mechanism.
Once the injection is switched off, drug levels rapidly decrease. In comparison, the nanoparticle
delivery system features two significant advantages. First, the particle adhesion mechanism allows
for the accumulation of drug on the capillary walls. Secondly, the presence of particles decorating
the capillary walls ensures a persistent drug release rate after that the injection of particles has
stopped.

The profiles of TPZ concentration have a direct impact on the amount of metabolized drug. The
maps of metabolized drug are shown in Figure 8. We observe that these maps look alike in all
reported cases. This similarity confirms the dominant role of oxygen concentration to selectively
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Figure 8. Comparison of metabolized TPZ released from bolus injection (top row) and nanoparticle injection
(bottom row).



activate the drug metabolization. However, the magnitude drastically changes from case to case.
Because for the bolus delivery mode the drug supply to the tissue stops at 20 min, the amount of
metabolized drug remains almost constant after this time. In contrast, the buffer effect provided by
the adhered nanoparticles is responsible to a significant increase of metabolized drug over time.

More precisely, Figure 7 shows that W;’;Z is about 10 times larger than HZZ 6 h after injection.

Similarly, from Figure 8, we observe that the pointwise values of M5 and M. g’; 7 scale by a factor

20 at 48 h after delivery.

Finally, we compare the cell surviving fractions (SF) relative to bolus and nanoparticle injec-
tion. The cell surviving fraction depends on space and time, but also on the oxygen availability. To
selectively attack tumor mass, TPZ it targeted to treat hypoxic tissue. As shown in [2], it is conve-
nient to plot the dependence of SF on oxygen concentration. This visualization of SF is displayed in
Figure 9. The points of the diagram correspond to the nodes of the computational grid in the inter-
stitial volume, denoted with x;. For each node, we extract the value of oxygen concentration and
surviving fraction, at the final time,

(t=T,x;) > c)*(t=Tx;), SF(t =T, x;).

Then, in the diagrams of Figure 9, the surviving fraction is plotted with respect to the corresponding
oxygen concentration, while the spatial information is hidden. As expected, SF sharply decreases
for low oxygen concentrations, confirming that TPZ is able to selectively target hypoxic regions.
The nanoparticle delivery mode results to be more effective also with respect to this indicator. On
a short time scale, equivalent to the injection time, the efficacy of the bolus injection treatment is
not particularly satisfactory because more than 50% of the cells still survive in hypoxic regions. For
nanoparticle injection, the plot of SF after 20 min has a similar pattern (Figure 9), but the minimum
of SF reaches 10%, confirming that this delivery modality is more effective. While the situation
is almost unchanged for longer time scales in the case of bolus delivery, the performance further
improves for nanoparticles on the time scale of 48 h. Indeed, the SF profile has shifted downwards
and its minimum reaches zero for low oxygen concentrations, meaning that almost all the cells in
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Figure 9. Comparison of cell surviving fraction (SF) when TPZ released from bolus injection (subscript
bol) and nanoparticle injection (subscript np).



the interstitial volume are treated. A slight drawback of the treatment based on nanoparticles can be
detected looking at the distribution of the points in the SF plot (Figure 9). The dispersion of the point
cloud increases and the slope of the underlying curve decreases with respect to the corresponding
plot for bolus injection. This suggests that action of TPZ becomes less selective to target cells
exposed to low oxygen concentration.

4. CONCLUSIONS, LIMITATIONS AND FUTURE PERSPECTIVES

In this study, we have developed a model capable to simulate the spatio-temporal evolution of drugs
delivered to a tumor mass. The analysis is performed at the microscale, where the fundamental
physics at the basis of flow and transport can be directly applied. We have used the model to compare
bolus and nanoparticle injection for delivering chemotherapy agents. The model provides different
insights on treatment performance, based on the analysis of specific quantitative indicators, such
as the cell surviving fraction. The model suggests that bolus injection does not provide an optimal
delivery. Drug washout by the blood stream and saturation of the concentration level in the intersti-
tial tissue play as limiting factors for the amount of drug that reaches the interstitial volume, where
malignant cells are active. The simulations confirm that a more controlled drug delivery process,
achieved by means of nanoparticle injection, helps to override the previous limitations.

Besides these encouraging results, the model is open to several improvements. A current limi-
tation is that it only approximately describes the complex phenomena involved in the interaction
of red blood cells with fluid flow and oxygen transport. Although the full three-dimensional res-
olution of the fluid-particle interaction would be too demanding for our purposes, other reduced
microcirculation models, such as [40, 41], should be in future considered and eventually applied
to this study. Another line of development consists in coping with the rapid technological progress
in designing innovative methods to efficiently and selectively deliver drugs [31, 32]. Indeed, the
model can be extended to encompass different drug delivery platforms. Further ramifications of this
research will also be devoted to develop specific models for different types of cancer. We expect
that tumors developing in the brain, breast, liver or lungs may feature significant differences in their
transport properties. The physiology of these organs as well as available metrics to characterize their
transport properties will be combined to set up specific variants of the model for different tumors.
Another limitation of the study consists to consider a tumor as a static environment. Future devel-
opments of the model will indeed consider the tumor microenvironment as a dynamic system where
angiogenesis, cell proliferation and drug treatment constantly interact.
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