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Abstract—Soundfield imaging is a special analysis methodology aimed at capturing the directional components of the acoustic field and 
mapping them onto a domain called “ray space”, where rele- vant acoustic objects become linear patterns, i.e., sets of collinear points. 
This allows us to overcome resolution issues while easing far-field assumptions. In this paper, we generalize this  concept by introducing 
the ray space transform for acoustic field repre- sentation. The transform is based on a short space-time Fourier transform of the 
signals captured by a microphone array, using discrete Gabor frames. The resulting transform coefficients are parameterized in the 
same ray space used for soundfield imaging. The resulting transform enables the definition of analysis and syn- thesis operators, which 
exhibit perfect reconstruction capabilities. We show examples of applications of the ray space transform to source localization and spot 
spatial filtering. 

Index Terms—Array signal processing, wave field processing, sound field analysis, near-field spatial filtering, plenacoustic func- tion, 
space-time analysis, source localization. 

I. INTRODUCTION

HE need of developing new and effective methodologies 
for sound-field analysis and processing has been steadily 

growing for the past few decades and has become crucial in 
application domains such as multimedia communications [1, 

Chap. 3], noise control [2] and the study of vibrating structures 
[3]. The initial focus of research was on localizing, tracking, 

extracting and identifying sound sources in an acoustic scene. 
Spatial information of the acoustic field is usually captured 

with microphone arrays [4]. State-of-the-art microphone array 
processing techniques can be classified into two broad cate- 
gories. The first category is based on an omnidirectional analy- 
sis of array data, which means that no directional components 
of the wave field are considered. These techniques capture lo- 
cal information of the acoustic field by analyzing the impulse 
responses at multiple microphone locations [5]. Prominent ex- 
amples include techniques for noise reduction [6]–[14], multi- 
channel acoustic echo cancellation [15], channel identification 
[16], source localization [17]. 

The second category of array processing methodologies, on 
the other hand, relies on the analysis of directional components 
of the acoustic wave field, extracted through a joint analysis 
of microphone signals, with reference to a specific wave-field 
decomposition. For example, if the source is located at a suf- 
ficiently large number of array lengths from the microphones 
(far field assumption), wavefronts can be safely considered as 
planar and the underlying data model can explicitly rely on 
plane-wave decomposition. This enables the assumption of a 
space-invariant impulse response over the spatial extension of 
the array. Prominent examples of techniques relying on this 
assumption are [18]–[24]. However, performance degradations 
occur when the far-field assumption is not fully satisfied, as it 
can happen in many real-world scenarios. 
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A more general setting than the two above was proposed in 
[25], with the introduction of the plenacoustic function f (r, k), 
defined (in a time-harmonic scenario) as a function of the ob- 
servation position r and the spatial wavenumber vector k. As 
the spatial wavenumber vector for propagating waves can be 
interpreted as a direction of propagation, this function can be 
interpreted as the complex amplitude of an acoustic directional 
component traveling through point r. This mathematical set- 
ting, already exploited in the optical domain [26], [27], was 
introduced in [25], [28], [29] with the goal of deriving a sam- 
pling condition. Mignot et al., [30] later revisited the sampling 
problem of the plenacoustic function in the light of compressive 
sampling. 

Later, Pinto and Vetterli [31], [32] proposed a time varying 
representation of acoustic signals. These works introduce a rep- 
resentation that is approximated for sources that do not fully 
satisfy the far-field condition, i.e. sources that are closer than  
r = 2Δ2 /λ,r being the source distance, Δ the length of the ar- 
ray and λ the wavelength [33]. The representation proposed in 
[31], [32] enabled the authors to approximate the acoustic field 
produced by sources in the near field by far field components, 
which facilitates the estimation of the Direction-of-Arrival of 
acoustic sources and enables spatial filtering [34]. 

The idea of approximating fields produced by nearby sources 
with far field components was later revised and put into work 
with the introduction of the ray space as a domain of defini- 
tion, both in Euclidean [35] and in projective form [36]. This 
led to soundfield imaging methods that enable the effective en- 
coding and the decoding of “local” information in the acoustic 
field. Operatively, the soundfield image is estimated in [35]  
by subdividing the array into smaller portions and by estimat- 
ing the amplitude of directional components for each portion 
of the array through beamforming. Through a nonlinear map- 
ping of the beamforming power output onto the ray space [37], 
all acoustic primitives become linear features, thus enabling 
super-resolution methods for acoustic scene analysis, such as: 

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works. To access the final edited and published work see http://
dx.doi.org/10.1109/TSP.2016.2591500

http://dx.doi.org/10.1109/TSP.2016.2591500


· · · 

√ 

Fig. 1. Microphone array, local analysis points and directions. Array data are 
partitioned into subgroups, weighed by a spatial window, and modulated in 
order to phase-align acoustic contributions from directions {θw }. 

localization of sources or reflectors [35]; source separation [38]; 
“sharpening” of plenacoustic images [39]; and extraction of 
other spatial information [40]; all accomplished with pattern 
analysis techniques. Also worth noticing is the fact that the def- 
inition of ray space is Euclidean when working with a single 
microphone array [35] but becomes projective when multiple 
arrays are being used [41]. 

The methods in [35], [41] ease the far field hypothesis by ba- 
sically scaling it down. Sources no longer need to be in far field 
with respect to the length Δ of the global array, but only with 
respect to the subarray size Δ1 < Δ. Considering each subar- 
ray, the methods keep relying on the plane-wave decomposition. 
This limits the performance of spatial filtering, which degrades 
at low-frequencies and when the source distance becomes com- 
parable to the size of the subarrays. In this article we focus on 
overcoming this limitation by generalizing and formalizing the 
soundfield analysis introduced in [35], [41] through the adoption 
of discrete Gabor frames [42]–[48] in the space-time domain. 
More specifically, the wave field decomposition that we define 
relies on a new (overcomplete) basis of wave field functions of 
both temporal and spatial local validity. We will discuss this 
decomposition and how to guarantee its invertibility using a 
countable number of components. 

We perform local Fourier analysis through a computation of 
the similarity between the array data and shifted and modulated 
copies of a prototype spatial window applied to the microphone 
data, as shown in Fig. 1. This turns out to be equivalent to a 
beamforming that extracts directional components on a prede- 
fined set of directions, but without the far field and frequency 
limitations discussed above. Our goal, however, is not just to 
generalize soundfield imaging: we want to define a linear oper- 
ator Ψ that maps array data u(ω) onto the ray space and, using 
Gabor signal expansions, define its inverse Ψ̃  for a perfect re- 
construction of array data. This way, as shown in Fig. 2, we 
can do the processing directly in the transformed domain (ray 
space), with no loss of information. 

This newly-defined ray space transform exhibits several im- 
portant properties: 1) it leads to an inherently local representa- 
tion, as only the coefficients in the proximity of an observation 
point actually contribute to the acoustic field in that location; 
2) it is invertible, which means that working in the transformed
domain (ray space) can be done in a lossless fashion; 3) the

Fig. 2. Analysis, synthesis and processing operations in the ray space. 

ray space parameterization bears strong geometric insight on 
the spatial properties of the acoustic field (i.e., spatial position 
of the acoustic sources, etc.) and preserves all the properties of 
soundfield imaging. 

The ray space transform, however, goes beyond simple com- 
patibility with soundfield imaging. We will show this through 
a more general application of processing in the transformed 
domain (in the ray space). We will introduce a “spot” spatial 
filtering as a form of windowing in the ray space, which leaves 
selected spatial contributions as undistorted (i.e., sound coming 
from specific locations in space), while attenuating others. In 
particular, we will show an example of ray-space filtering based 
on a minimum mean-squared error design criterion. The design 
of the spot spatial filter is intuitive in the domain of the ray 
space transform, whereas other techniques require optimized 
approaches [49], [50]. We remark that the examples of applica- 
tion proposed in Section V are intended with the mere purpose 
of proving the generality and the flexibility of the proposed 
framework in various scenarios. 

It is worth noticing that the Gabor expansion, already quite 
novel for acoustic signal analysis, has been widely used for 
the representation of wave fields in other contexts, ranging from 
optical imaging [51], [52], through antenna arrays [53], [54] and 
seismic signal processing [55]–[57]. Thanks to its generality, we 
believe that the Ray Space Transform proposed in this paper can 
find application also in these fields. 

The rest of the manuscript is organized as follows. Section II 
describes the signal model and goes over the necessary back- 
ground information. Section III introduces the ray-space trans- 
form, first in the case of a continuous aperture; then for a discrete 
array of sensors. In this second case, the transform is defined as 
a matrix multiplication. The inverse transform is then derived, 
based on the discrete Gabor dual frame [58], [59], both for  
the continuous and the discrete setting. In Section IV we show 
the relation between the proposed ray space transform and the 
soundfield mapping introduced in [35]. Section V features two 
case studies, where the properties of the ray space representation 
are exploited for localization and spot spatial filtering. Finally, 
Section VI draws conclusions. 

II. SIGNAL MODEL AND BACKGROUND 

A. Notation

In this manuscript we adopt the following notation:
• We use lowercase letters for scalars, boldface lowercase

letters for column vectors; boldface uppercase letters for
matrices.

• Superscripts ( )T , ( )∗, and ( )H denote transposition, con- 
jugation, and conjugate transposition, respectively. 

• (·, ·) denotes inner product, while ǁ · ǁ  denotes L2 norm.
• j is the imaginary unit (j = −1).
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• [A]i,w is the element in row i and column w of the matrix 
A. [A]i,: is the ith row of matrix A. 

• E{·} denotes statistical expectation. 

ω/c[cos(θ), sin(θ)]T [41], where θ is the direction of propa- 
gation. The integral is taken over the propagating plane wave 
components 

 
B. Signal Model 

 
p(z, ω ) =

 1 
2π 

2π 
P (θ, ω)ejωz cos(θ )/c 

0 

 
dθ. (6) 

We  consider  an  acoustic  source,  in  spatial  coordinates  rJ, 
and  a  microphone  on  the  z  axis  in  position  r = [0, 0, z]T .  A  
system of this sort is generally characterized by a space-time 
varying acoustic impulse response. A common way to deal with 
time-varying acoustic impulse responses is to adopt a short-time 
processing  approach  [60]–[62],  where  signals  are  temporally 
spliced  and  processed  in  a  frame-by-frame  fashion,  and  pick a  
length  of  our  temporal  segments  that  is  short  enough  that the 
acoustic impulse response will be time-invariant within the 
frame itself. This way the output of the system for a single frame 
can be written in the temporal frequency domain as 

p(z, ω) = h(z|rJ; ω)s(ω), (1) 

where s(ω) denotes the temporal Fourier transform of the signal 
emitted by the source in rJ and h(z rJ; ω) is the acoustic transfer 
function between the source and a microphone in z. In what 
follows we assume a free-field propagation model, in which 

−jω ǁr−r Jǁ/c 
h(z|r ; ω) =  4πǁr − rJǁ , (2) 

c being the speed of sound. The extension of this model to 
accommodate multiple acoustic sources is quite straightforward. 

The output of the acoustic system for an array with L mi- 
crophones is given  as the multidimensional generalization  of 

(1) 

p(ω) = [p(z0 , ω ) , . . . ,  p(zL−1 , ω)]T ∈ CL×1 , (3) 

where zl,l = 0 , . . . ,L  1, is the location of the lth 
microphone. Eq. (3) can be rewritten as p(ω) = h(ω)s(ω), 
h(ω) being the propagation vector 

h(ω) = [h(z0 |rJ; ω), . . . , h(zL−1 |rJ; ω)]T . (4) 

In general, signals received by a microphone array are af- 
fected by additive sensor noise. For this reason, we introduce 
the following model for microphone signals 

u(ω) = p(ω)+ v(ω) = h(ω)s(ω)+ v(ω), (5) 

where v(ω) is an additive noise term with zero mean and co- 
variance matrix Φvv = φv IL , IL being the identity matrix of 
size L L and φv the noise variance at a single microphone. 

In Sections III and IV we focus just on the deterministic part 
of the microphone signals, p(ω). The model (5), including the 
noise term, will be adopted when introducing the examples of 
application of Section V. 

 
C. Directional Plenacoustic Function 

Let us review the concept of directional plenacoustic func- 
tion, as introduced in [41, Sec. II]. A useful representation for the 
signal in (1) consists in expressing it as an inverse Fourier trans- 
form with respect to the wavenumber vector k = [kx, kz ]T = 

This expression embodies the classical plane-wave decomposi- 
tion of the acoustic wavefield, as P (θ, ω) encodes the amplitude 
and phase of each plane-wave component. As discussed in [41], 
the directional plenacoustic function is formally defined as the 
integrand in (6) 

ϕ(z, θ, ω) := ejkz sin(θ) P (θ, ω) . (7) 

The estimation of P (θ, ω) can be accomplished through a beam- 
forming operation [31], [63], [64]. The function P (θ, ω) is usu- 
ally referred to as Herglotz Density in the literature [65, p. 54]. 
We remark that the representation (6) is valid only if the acoustic 
field is generated by far-field components [66]. 

Previous works in [35], [41] are based on the definition (7) 
of the directional plenacoustic function, where ϕ(z, θ, ω) is es- 
timated through multiple beamforming operations. Conceptu- 
ally, the estimation process can be divided into three steps: 
1) the array is subdivided into (possibly overlapped) subarrays; 
2) multiple beamforming is performed on subarray data to esti- 
mate P (θ, ω); 3) taking the subarray center as a reference point, 
phase functions are associated to P (θ, ω) to yield the estimate 
of ϕ(z, θ, ω) according to (7). This approach allows a local anal- 
ysis without having to give up the plane-wave model. However, 
the approaches in [35], [41], [67] suffer from two limitations: 
1) the reconstruction of the acoustic field from the plenacoustic 
function as described in [67] is not “perfect”, as it only approx- 
imates the inverse of the analysis operation; 2) using a global 
representation for local analysis, as done in [35], [41], [67], in- 
troduces some performance limits in terms of source bandwidth 
and distance. Despite these limitations, the methods described in 
[35], [41] prove quite effective thanks to the adoption of a highly 
structured domain for the directional plenacoustic function: the 
ray space. 

 
D. The Ray Space and the Soundfield Map 

In [35] a ray, or equivalently a planar wavefront, is described 
by the parameters of the line that it lies on. In the setting of 
Fig. 3 (left-hand side), acoustic rays sensed by the microphone 
array (lying on the z axis) are oriented lines that cross the z axis 
within the region occupied by the array (between q0 and q0 ). 
The linear equation 

z = mx + q, (8) 

parameterized by (m = tan(θ), q) describes any line, except for 
those that are parallel to the z axis. The space of such parameters 
is called ray space. Rays modeled this way are assumed to 
be coming from the half-space x > 0, which establishes an 
equivalence between acoustic rays and lines. The region of the 
ray space that corresponds to the rays that are visible from the 
microphone array is 

V = {(m, q) ∈ R × R : −q0 ≤ q ≤ q0 } , (9) 
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E. Local Fourier Analysis 

This paragraph introduces the local Fourier transform as a sig- 
nal processing tool to cope with signals whose frequency content 
is only locally static [42], [60], [71]–[73]. Here we review local 
Fourier analysis over the time domain. The generalization to 
time-space is approached in the next section. 

The local Fourier transform of a signal g(t),t R is defined 
as the discrete Gabor expansion [44], [45] 

 

 
 
 

Fig. 3. Ray space representation of a point source [35, Fig. 1]. Acoustic rays 

 
 

where 

[G]i,w = 
R 

g(t)ψi
∗
,w (t) dt, (11) 

emitted by the source and sensed by the array are drawn with solid lines. Rays 
that are not sensed by the array appear as dashed lines. Rays produced by the ψi,w (t) = ψ(t − iT )ej 

2 π  w (t−iT ) , (12) 
source and falling on the array form the region of interest    rJ , a line in the ray 
space. 

 
 
 

and is therefore called visibility region [37]. 
In order to gain more insight on how the acoustic information 

ψ(t) is the (real-valued) analysis window, i Z is the time  
frame index, w = 0 , . . . ,W 1 is the frequency band index, W 
is the number of frequency bins, and T is the window’s hop size. 
The local inverse Fourier transform enables the reconstruction 
of g(t) from its discrete local Fourier representation G as 

W −1 

is  structured  in  the  ray  space,  let  us  consider  the  ray  space 
representation of a point source at rJ = [xJ, yJ = 0, zJ]T , xJ > 
0. In geometrical acoustics, the field emitted by the source is 
described by rays belonging to the bundle of lines crossing at 

 
 

where 

g(t) = [G] 
i w =0  

 

i,w ψ̃i,w (t), (13) 

rJ [68, p. 26], [69, Chap. 11] (i.e., such that they are always 
perpendicular to the wavefronts). The parameters (m, q) of this 

˜
 

ψ̃i,w (t) = ψ̃(t − iT )ej 
2 π  w (t−iT ) , (14) 

bundle of lines must satisfy the linear equation q =    xJm + zJ. 
The region of the ray space corresponding to rays that are emitted 
by  the  source  (in  xJ > 0)  and  are  sensed  by  the  microphone 
array is 

 
RrJ  = {(m, q) ∈ R × R : q = −xJm + zJ,  −q0  ≤ q ≤ q0 } , 

 
as shown in Fig. 3. In [35] the authors map the energy of rays 
in the ray space to obtain the soundfield map. We remark that 
more complex acoustic fields can be obtained as a superposition 
of fields generated by point sources [70, p. 31]. 

One advantage in mapping acoustic data onto the ray space 
is that acoustic primitives (point sources, reflectors, etc.) are all 
mapped onto the ray space as linear patterns, therefore many 
acoustic signal processing problems can be solved using pattern 
analysis techniques. For example, the localization of multiple 
acoustic sources can be accomplished by estimating the param- 
eters of multiple lines [35]; the extraction of a desired source 
signal can be addressed by estimating the location of the source 
and then performing a spatial filtering that accounts for the loca- 
tion of the source [38]; other applications, such as the estimation 
of the radiance pattern of a source [39], [40] are accomplished 
by analyzing the soundfield map. 

In Section III we will introduce the ray space transform and 
we will adopt the ray space parameters m and q as the pa- 
rameters of the transform itself. We remark that this choice 
does not imply that the ray space transform is only valid un- 
der the geometrical acoustics approximation. To enforce this, in 
Section IV we include a simulation showing that the proposed 
ray space transform exhibits perfect reconstruction even when 
the geometrical acoustics approximation does not hold. 

ψ being the (real-valued) synthesis window. Any signal in 2 
can be perfectly reconstructed through (13) if the completeness 
condition 

ψ(t − iT )ψ̃(t − iT ) =   1  , ∀t ∈ R (15) 
i 

is satisfied. The windows ψ and ψ̃, along with the parameters T 
and 2π/W form a pair of dual discrete Gabor frames [58], [59]. 
In this view, [G]i,w can be interpreted as the similarity between 
the shifted and modulated Gabor prototype function ψi,w and 
g(t). The discrete-time versions of all these expansion can be 
readily obtained through temporal sampling and by replacing 
the integral with a summation. 

 
III. RAY SPACE TRANSFORM 

This section introduces the ray space transform as a structured 
redundant representation, based on the local Fourier transform. 
In the following we show that this analysis of acoustic sig- 
nals reveals important characteristics of the acoustic field; more 
specifically, we show how to estimate directional components 
of the acoustic field in the vicinity of an observation point. 

With the intent of adopting the ray space as the domain for 
our transformation, we parametrize directions θ by m = tan(θ). 
With this parametrization, the phase shift at position z due to a 
directional contribution from θ is given by 

  zm  
z sin(θ) = z sin(arctan(m)) = √

1+ m2 , (16) 

where the first equality is obtained by substituting θ = 
arctan(m) and the second equality follows from known in- 
terrelations among trigonometric functions [74, Tab. 4.16.3]. 

(10) 
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We will incorporate this expression for the phase shift into the 
spatial frequency analysis operation. 

In the following, we adopt an uniform grid for sampling the 
(m, q) plane, and we denote by q̄  and m̄  the sampling intervals 
on the q and m axes, respectively. In particular, we set qi = (i 
(I 1)/2)q̄, i = 0, . . . , I 1 and mw  = (w (W 1)/2)m̄ , 
w = 0 , . . . , W  1, I and W being the number of samples on 
the m and q axes, respectively. 

We consider all the acoustic quantities to be defined over 
a short time domain. For the sake of notational compactness, 
unless otherwise specified, we omit the temporal dependency. 

 
A. Ray Space Transform of a Continuous Aperture 

In this paragraph we consider the case of a continuous 
pressure-sensitive aperture (an ideal continuous array) deployed 
along the z axis between z = q0 and z = q0 . The aperture cap- 
tures the acoustic field p(z, ω), q0 z q0 . This allows us to 
derive analytic expressions for the ray space transform of simple 
examples of acoustic fields. In the following, we consider the 
Gaussian function 

z 2 
 

ψ(z) = e−π σ 2  , σ ∈ R (17) 

as the spatial window at the basis of our local Fourier analysis. 
The scalar σ controls the width of the Gaussian window. 

The ray space transform is defined as the local Fourier trans- 
form of the aperture data and it is obtained by computing the sim- 
ilarity between the captured acoustic field P (z, ω) and shifted 
and modulated copies of the window function (11). In the con- 
tinuous setting considered in this section, it takes on the form 

∫ q0 

  
− √j k z m w 

i,w 
−q0 w i,w merical integration) of the acoustic field produced by a point source in two dif- 

ferent positions, with m̄  = 0.03, q̄  = 7.5 mm, ω = 2π1 kHz, c = 340 ms−1 , 
where k = ω/c denotes the magnitude of the wavenumber vec- 
tor.  The  integer  w = 0 , . . . ,W  1 spans the grid of spatial 

frequencies,  while the integer  i = 0 , . . . , I  1 spans the spa- 
tial displacement along the z axis. Notice that the array has, 
inevitably, a limited extension, therefore it is bounded within 
q0 and q0 . This means that, in addition to the moving spatial 

window (17), there is a fixed rectangular window of length 2q0 . 
The inverse ray space transform is defined as the inverse local 

Fourier transform of the ray space coefficients (cfr. (13)) 

σ = 0.2 m, and z0  = 0.75 m. (a) xJ = 0.3, z J = 0. (b) xJ = 3, z J = 0. 
 
 

In order to help clarify this interpretation, let us show an 
example of application of the ray space transform to a spherical 
wave acoustic field. 

2) Ray Space Transform of a Spherical Wave Acoustic Field: 
Consider the acoustic field generated by a point source at po- 
sition rJ = [xJ, 0, zJ]T and observed on the continuous aperture 

I−1 W −1 

p (z, ω) =  
i=0 w =0  ˜ 

 
[Z
] 

 
 
i,w 

 
(ω)e 

 
jk z m w 

1+ 2 
w i,w 

 
(z), (19) 

defined on the z  axis between  z = q0 and z = q0 . The ob- 
served acoustic field can be written as [3, p. 198] 

e−jk
√

xJ2 +(z J−z )2 (z, ω) =   . (20) 
 

 

where ψi,w (z) is the synthesis window as defined in the context 
of (13). In Section III-B we will describe how to compute the p 

4π
√

xJ2  + (zJ − z)2 

synthesis window ψ̃(z) given an analysis window ψ(z). 
1) Interpretation: The interpretation of (18) is immediate 

upon considering a single spatial window, i.e., upon fixing i. 
In this case, (18) is interpreted as the beamforming operation 
[75, Sec. 6.3.1] applied to the aperture data that have previously 
been weighed by a Gaussian spatial windowing function 
centered at qi. In the light of this interpretation, [Z]i,: provides a 
collection of the outputs of multiple beamforming operations, 
each computed from a specifically weighed portion of the 
aperture data. 

The ray space transform of the acoustic field generated by a 
point source is obtained as a solution of the integral that we 
obtain by inserting (20) into (18). To the best of our knowledge, 
no closed form solution to such integral exists; for this reason, 
the following results are obtained through numerical integra- 
tion in MATLAB, using the global adaptive quadrature method 
in [76]. 

Fig. 4 shows the magnitude (in dB) of the ray space transform, 
obtained through numerical integration in MATLAB, of the 

(ω) =  [Z
 

p(z, ω)e (z) dz, (18) Fig. 4. Magnitude (in dB) of the ray space transform (obtained through nu- 
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acoustic field produced by a point source on the x axis at 0.3 m 
(Fig. 4a), and at 3 m (Fig. 4b) from the array, respectively. 

Similarly to what happens in soundfield imaging [35] the ray 
space transform maps a source onto a linear pattern. The slope 
and the intercept of that line are the coordinates of the point 
source [35]. 

 
B. Ray Space Transform of a Discrete Array 

Let us now consider a uniform microphone array of L sensors 
on the z axis, between q0 and q0 . Let us denote by d the distance 
between adjacent microphones, so that the lth microphone will 
be in zl = (l − (L − 1)/2)d. After discretizing (18) with respect 

 

field on the array given the soundfield map coefficients; 3) we 
compare the synthesized fields using soundfield map and ray 
space transform frameworks. 

 
A. Soundfield Map Analysis and Synthesis 

We consider the soundfield map of a point source as defined 
in [35], where the length of each subarray (see Section II-C)  
is assumed as small compared to the distance of the acoustic 
source; and a far field propagation model can thus be adopted. 
The acoustic field observed by the ith subarray can therefore be 
written as 

f (z, ω) = ejkz sin(θi
J ) , for    z ≈ q , (27) 

L−1 − √j k z l m w    
  2

 
 

 

where θi
J  is the angle under which the source is observed by the 

 

  
The discrete ray space transform can be conveniently writ- 

ten in matrix form. For this purpose, we introduce the ma- 
towards a direction θw . By adopting the ray space mapping (16), 
we obtain 

trix Ψ(ω) CL×IW whose element in row l and column 
(i + wI + 1) is given by 
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d, (22) where Θ = sin(θJ ) −      m   = sin(θJ ) − sin(θ 
 

 

), and 

for l = 0 , . . . ,L  1. We also introduce the canonical dual 
matrix Ψ̃      CIW ×L  [58] corresponding to the pseudo-inverse 
of Ψ: 

Ψ̃  = 
.
ΨΨH 

Σ−1  Ψ. (23) 

1+ m 2 

rect((z qi)/ν) denotes a rectangular function of width ν, 
centered in qi. From (28) we notice that the soundfield map 
encodes the position of the acoustic source in the locus qi = 
−xJ + mw + zJ, which matches the locus that we would obtain 

 
We  finally introduce the vector z CIW ×1 obtained by rear- 
ranging the elements of Z as 

through the ray space transform. 
Given the soundfield map analysis formula (28), we obtain 

its inverse as 

[z] = [Z] . (24) I−1 W −1 
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We can now write the discrete ray space transform as i=0 w =0  ν 
(29) 

z = ΨH p . (25) 

By exploiting the properties of dual frames, we can also write 
the inverse of the ray space transform as 

p(Z) = Ψ̃ H z . (26) 

In order for p(Z) to represent a perfect reconstruction formula, 
we need the decomposition to be either complete or overcom- 
plete, i.e., IW L. For reasons that will be clearer later on, 
however, we will normally operate in conditions of overcom- 
pleteness, in which case there exist an infinite number of matri- 

where rẽ ct( ) denotes the dual window of the rect function within 
the setting of Gabor frames. This dual window rẽ ct( ) does not 
exhibit a finite length, therefore it needs to be properly truncated. 

 
B. Discussion 

We compare the normalized mean squared error of the acous- 
tic field from (26) (with Z(ω) given in (21)) and the one of (29) 
(with F(ω) given in (28)) with respect to the ideal acoustic field 
(20). The normalized mean squared errors are computed as 

ces that could play the role of dual matrices to Ψ. The choice (Z ) . 
1 LΣ−1  |p(z , ω) − p(Z) (z , ω)|2 

Σ
 

 

of the canonical dual, which leads to the pseudo-inverse of  Ψ 
is the one that guarantees the coefficients to have minimum 
norm [58]. 
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 IV. RELATION WITH THE SOUNDFIELD MAP 

This section investigates the relation between the ray space 
transform introduced in Section III and the soundfield map intro- 

NMSE = 10 log10 L 
l=0  

l l 
|p(zl, ω)|2 
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(31) 

duced in [35], [41], [67] and reviewed in Section II. We proceed 
in the following way: 1) we derive the expression for the coeffi- 
cients of the soundfield map; 2) we derive the inversion formula 
for the soundfield map, that will express the observed acoustic 

Fig. 5 shows NMSE(Z) and NMSE(F) as a function of tempo- 
ral frequency, for a source located at (1 m, 0 m). We observe that 
the ray space transform is accurate at all temporal frequencies. 
On the other hand, the soundfield map is not able to accurately 
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where N/2 is the number of considered frequencies. In the 
simulations the expectation is approximated by an average over 
J = 10 time frames: 

E{Z(ω  )} =  1 Σ 
Z(j ) (ω  ), (33) 

 
 
 
 

  

 
Fig. 5.     Normalized mean-squared error of (19) and (29) as a function of tem- 
poral frequency. m̄  = 0.03, W  = 201. q̄  = 8 mm, I  = 201. c = 340 ms−1 , σ 
= ν = 0.3 m, q0  = 1 m. The acoustic source is located at rJ = [1 m, 0 m]T  . 

where Z(j) (ωa ) = ΨH (ωa )u(j) (ωa ) are the ray-space coeffi- 
cients computed at the jth time frame. 

Localization is accomplished by exploiting specific features 
of the ray space, in particular through (10). From , peaks are  
identified  for  each  row     i,:  at  values  m̂ i .  The  position of 
the acoustic source is estimated through a least-squares 
regression of the identified peak locations. In particular, let 
us  introduce  M̂  = [−m̂ , 1],  with  m̂  = [m̂ 0 , . . . , m̂ I −1 ]T    and 

 

represent an acoustic field at mid-low temporal frequencies. We 
attribute this fact to the mismatch between rẽ ct and the actual 
dual of the rectangular window. In the applications that include 
spatial filtering, we are therefore forced to filter out frequen- 
cies at which NMSE(F) is not neglibible, thus introducing an 
unwanted limitation of the signal bandwidth. 

 
V. EXAMPLES OF APPLICATION 

We now discuss two examples of acoustic signal analysis 
and processing in the ray space. These examples are not to    
be taken as optimized solutions for the problems at hand but 
rather are presented with the purpose of showing how acoustic 
analysis and processing problems can be effectively formulated 
in the ray space domain. In both cases we assume operating 
conditions to be time-varying, which requires us to perform a 
short space-time analysis (11) on the microphone signals (5), 
by subdividing them into time frames. For notational simplicity, 
time dependence is only made explicit where needed. 

 
A. Localization 

The idea of acoustic source localization in near field condi- 
tions based on soundfield image analysis in the ray space was 
first proposed in [35]. Localization was based on the acoustic 
field model described in Section II-C, remapped onto the ray 
space. The same localization approach was adopted in [67]. We 
now show how the same localization problem can be approached 
using the discrete ray space transform of Section III-B. The pur- 

1 = [1, . . . , 1]T   ∈ RI ×1 ;  we  also  introduce  the  vector  q = 
[q0 , . . . , qI −1 ]T    collecting  the  positions  of  the  centers  of  the 
spatial windows on the z axis. Using these definitions and (10), 
we can easily derive M̂ rJ = q. The source position can then be 
estimated as 

r̂J =   M̂ T M̂    −1  
M̂ T q. (34) 

2) Performance measure: In order to validate the localiza- 
tion approach, we measure the performance with the localization 
error, defined as the distance between the actual source position 
and the estimated one: 

 ̂

where r̂J is obtained through (34). 
3) Simulation Setup: For the simulations we use a uniform 

linear microphone array made of L = 16 sensors, with a spac- 
ing of d = 0.1 m. The temporal sampling frequency is set to  
Fs = 8 kHz. For the source signal s(ω) we use a complex Gaus- 
sian white random process of power spectral density φs = 1, 
constant for all frequencies. An additive white noise process 
according to (5) is considered, where the noise power spectral 
density φv is constant with frequency. 

We remark that the microphone spacing d chosen for the 
simulations dictates aliasing for frequencies above 1.7 kHz, 
while the upper frequency limit of all our analysis is Fs /2 =   4 
kHz. 

We introduce the input signal to noise ratio as the ratio be- 
tween the variance of the source signal received by the first 
microphone and the variance of the noise on a single micro- 
phone. More formally, 

pose, however, is not to improve localization performance, but 
to show how the formalism introduced in this manuscript can 
be used for that purpose. 

 
iSNR(ω) =  

E{|h(r0 |rJ; ω)s|2 } = 
φv 

|h(r0 |rJ; ω)|2 φ 
φv 

 
s . (36) 

1) Methodology: Localization is performed considering a 
wideband extension of the ray space coefficients. In particular, 
given the magnitude of ray space coefficients Z(ωa ) at discrete 
temporal frequencies ωa , the wideband magnitude estimate is 
defined as 

The short time analysis is implemented considering time 
frames of duration 8 ms (i.e., 64 samples) and the short 
time Fourier transform is evaluated at frequencies ωa = 
2πaFs /(N 1), a = 0 , . . . ,N  1. 

4)  Simulations:  Fig. 6 shows the localization performance 
(35) as a function of the iSNR. For this simulation, the acoustic 

N /2 

= 
a=0  

N/2 

E{|Z(ωa )|}⎛ , Z ∈ RI×W , (32) 
source is placed at rJ = [1 m, 0 m]T . From a qualitative analysis 
of  Fig.  6  we  deduce  that  the  localization  is  achieved  and  its 
performance is stable (in the sense that the localization error s 
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Fig.  6.     Localization  error  s  as  a  function  of  iSNR.  W  = 201,  m̄  = 0.03. 
I = 101, q¯ = 0.012 m. σ = 0.3 m. c = 340 ms−1 . 

variance, which is not easy to extract from real-world array 
data. A more practical formulation is obtained by rewriting the 
transformed array covariance matrix as1 

Φzz = Φs∗ z hH Ψ + ΨH Φvv Ψ. (41) 

In order to obtain Φs∗ z from (41), we introduce the vector g as 
the collection of the inverse propagation functions from micro- 
phones to the source location, which, for the temporal frequency 
ω, can be written as 

g = [g(r0 |rJ; ω), . . . , g(rL−1 |rJ; ω)]T  ∈ CL×1 , (42) 
where 

g(r |rJ; ω) = 4πǁr  − rJǁe−j   ǁrl −r ǁ. (43) ω J 

is constant) above an input signal to noise ratio iSNR ≥ 0 dB. l l c 

Below this threshold, the localization error increases largely. 
We remark that the choice of the sampling intervals m̄  and q̄  is 
rather arbitrary and mainly depends on the specific application 
scenario. For the simulative scenario considered here, the choice 
m̄  = 0.03, q̄  = 0.012 m gives good results. 

Furthermore, we remark that this simulation result is obtained 
considering also frequencies above the aliasing frequency of the 
array. Localization results are not affected by aliasing thanks 
to the property of the ray space mapping, which maps aliased 
components as quadratic patterns [35]. Those patterns are easily 
discarded by the methodology adopted in this section. 

 
B. Filtering in the Ray Space 

Let us now consider an application of ray space processing 
to the case of filtering of acoustic signals, as captured by a 
microphone array. The filtering operation is designed in order 
to reduce the effect of sensor noise on the acoustic data. 

1) Filter design: Given the array model (5), we target an 
estimate  ŝ(ω)  of  the  source  signal  s(ω)  in  the  form  ŝ(ω) = bH 
z(ω), being z(ω) = ΨH (ω)u(ω) and b ∈ CIW ×1 a suitable 

With this definition of g, we have hH g = 1. Then we right 
multiply each member of (41) by Ψ̃ g. Upon considering (from 
(Section III-B)) that ΨΨ̃  = IL , we can rewrite the filter b in the 
following form, which requires the knowledge of the noise 
variance, 

b = Ψ̃ (IL − Φ−1 Φvv )g. (44) 

Notice that the formulation (44) is important for applications as 
it only relies on the knowledge of the noise variance; which can 
be accurately estimated from array data (see [77]). Notice also 
that the proposed filter in (44) requires the knowledge of the 
source position. As this information can be extracted from array 
data using the ray space approach presented in Section V-A, in 
what follows we investigate on the impact of the localization 
error on the filtering performance. 

2) Performance measures: We validate the filtering ap- 
proach by considering the signal to noise ratio at the output   
of the filter [62], defined as the ratio between the variance of 
the filtered transformed signal over the variance of the filtered 
transformed noise, i.e. 

ray space filter. In the following we omit the dependence on ω 
for notational convenience. 

We adopt a minimum mean square error criterion 
oSNR = E{|bH ΨH p|2 } 

E{|b   Ψ   v| } 
(45) 

E  |s − bH z|2    , (37) 

to derive the optimal filter. The solution to this minimization 
problem is the Wiener filter (e.g., [4, Chap. 6] and references 
therein) 

b = Φ−1 Φs∗ z , (38) 

where 

Φzz = E{zzH } = ΨH Φuu Ψ (39) 

is the covariance matrix of the transformed array data, and 

Φs∗ z  = φs ΨH h (40) 

is the cross-covariance between the source signal and the 
transformed array data. The equality of (40) is valid if the 
source signal and the additive noise signals are statistically 
independent. 

Equation (38) returns the filter in a form that is not convenient 
for practical applications, as it requires knowing the source 

3) Simulations: In the following, the filter b in (44) is de- 
signed based on the sample estimate of the covariance matrices 
Φuu and Φvv . In order to regularize the inversion of Φuu , we 
apply the eigenvalue decomposition and we set to zero those 
eigenvalues that are smaller than 50 dB [11]. We adopt here 
the same simulative setup described in Section V-A3. 

Fig. 7 shows the output SNR (45) as a function of the tempo- 
ral frequency ω. For this simulation we assume that the source 
position rJ is known with infinite accuracy, so that the filter b is 
computed by exploiting this knowledge, while in Section V-B4 
we show the impact of the localization error. Results are shown 
for different values of the input signal to noise ratio iSNR. We 
notice the the oSNR, for all the iSNR, is constant throughout fre- 
quencies, even above the spatial aliasing frequency of the array. 
Moreover, we notice that the ratio oSNR/iSNR is approximately 
equal to 15 dB, irrespective of the value of iSNR. 

 
1The formulation in (41) is obtained from (39) starting with [75, p. 281] 

Φuu = φs hhH + Φvv . This result is transformed through Ψ and then, after using 
(40), (41) follows. 



 

is more general than it seems, as other sources of uncertainty 
are shown in [78], [79] to exhibit a similar impact. 

 

 
 
 
 
 
 

  
 

 
Fig. 7.     Output signal to noise ratio oSNR as a function of temporal frequency 
for different values of the iSNR. W  = 201, m̄  = 0.03. I  = 101, q̄  = 0.012 m. 
σ = 0.3 m. c = 340 ms−1 . The source position rJ is assumed to be known. 

 
 

 

  
 

 
Fig. 8.     Output signal to noise ratio oSNR as a function of temporal frequency 
for different values of the iSNR. W  = 201, m̄  = 0.03. I  = 101, q̄  = 0.012 m. 
σ = 0.3 m. c = 340 ms−1 . The source position r̂J is estimated from ray space 
data. 

 
 
 

4) Impact of localization error: In practical applications, 
where the source position is not known in advance, the filter 
can be computed based on an estimate of the source position 
obtained through the approach presented in (V-A). The esti- 
mate r̂J is used, in particular, to compute the estimated propaga- 
tion vector ĥ = [h(r0 |r̂J; ω), . . . , h(rL−1 |r̂J; ω)]T , or its inverse ĝ 
= [g(r0 |r̂J; ω), . . . , g(r    1 |r̂J; ω)]T , which are used, in place 

VI. CONCLUSIONS 

In this manuscript we introduced the ray space transform in 
the context of acoustic array processing. We formulated the ray 
space transform as a local Fourier analysis of array signals in the 
spatial domain. We also showed that the parameterization of the 
transform coefficients in the ray space enables array processing 
operations to be carried out through pattern analysis techniques. 
In particular, we showed applications of the ray space transform 
to problems of acoustic source localization in the near field of 
the array and for spatial spot filtering. We also supported the 
theoretical derivations with simulations. 

We found the ray space transform to be a valuable tool for mul- 
tiple reasons. 1) It inherits all the advantages of the ray space- 
based representation [35], [41]; in particular, it turns acoustic 
analysis problems into pattern analysis problems, thus enabling 
the use of solutions from the rich literature on pattern analy- 
sis and multidimensional signal processing. 2) Ray space anal- 
ysis and synthesis operations are both data-independent and 
application-independent; thus, we can foresee the production 
of dedicated hardware to perform such tasks. 3) The theory of 
Gabor frames provides us with an analytical tool to assess the 
quality of the transform, in terms of resolution issues, numer- 
ical stability, inversion. 4) The quality of the approximation 
provided by the ray space transform is constant over temporal 
frequency. This is not the case of the soundfield map, which 
provides a good approximation of the acoustic field only for 
mid-high frequencies. 

The examples of application presented in this manuscript 
represent an initial proof of concept of these idea and they will 
be extended in future works. 
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