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ABSTRACT
This paper compares two periodic control methods, the optimal H2 and the periodic static output feedback (POF), to reduce
the helicopter rotor vibrations. Actively twisted blades with macro-fiber composite (MFC) piezoelectric actuators are used.
The design model is based on a simplified aerodynamic model and on a multibody model of the Bo105 isolated rotor with the
original blades replaced by actively twisted ones. The performance of the two controllers in alleviating hub loads is verified
with improved simulations based on a free wake model.
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NOMENCLATURE
c Blade choord
Ak, Bk, Ck, Dk Discrete time model matrices
AC

k , BC
k , CC

k , DC
k Periodic controlle matrices

CL, CD, CM Lift, drag and moment coefficients
CnM2 Sectional normal force coefficient
E {., .} Variance matrix
E[.] Expected value
F Tip loss correction factor
Fz Blade root shear force
FZ Hub vertical force
J Performance index
Kk Feedback proportional gain
MX , MY Hub moment along x and y axis
N Discrete controller period
Ok Observability matrix
p Pitch bearing position
Qi k, Ri j k QR factorization matrices of Uk,s and Y k,s, (i, j) = {1,2}
R Blade radius
Uk,s, Y k,s Input and output Hankel matrices
Uk, Σk, V k Singular value decomposition matrices of R22 k
TZ Rotor thrust
u System control
V Electric potential
V∞ Free stream velocity
w White noise
Wdist Baseline loads shaping filters
Wn Disturbance shaping filters
Wper f Performance weighting function
x, y System state and output vectors
z System performance
α Shaft angle
ϑp Precone angle
ϑtw Blade twist
µ Advancing ratio
νβ Non-dimensional flap frequency
νϑ Non-dimensional torsional frequency
νξ Non-dimensional lag frequency
Ω Rotor angular velocity

1.0 INTRODUCTION
Helicopters experience severe levels of vibration on the main rotor due to the asymmetrical airflow in forward flight. These
vibratory loads are transmitted to the fuselage and degrade the flight comfort, while causing structural components fatigue
and wear. Active controls are being extensively investigated by helicopter researchers to reduce the related vibrations. The
basic strategy to alleviate such loads is to modify the periodic aerodynamic loads at harmonic frequencies above the 1/rev.
The simplest approach is to control the already available swashplate through a suitable harmonic signal computed by the
higher harmonic control (HHC) algorithm (1), based on a linear quasi-static rotor model response. However, it is now possible
to embed actuators into the blades and thus to independently control each blade . This allows to overcome the limitations
of using only swashplate as actuator, such as the need to install otherwise over-dimensioned hydraulic actuators and the
impossibility to independently control more that three blades. Different methods of actuation have been studied to carry
out individual blade control (IBC) (2,3,4,5). In this paper we assume the availability of actively twisted blades. Piezoelectric
actuators are distributed along the blade span, with the control voltage computed to minimize the aerodynamic loads. This
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solution has been widely investigated in recent years (6,7), and experimental tests carried out at NASA (2) and DLR (8,9) proved
its feasibility.

The complex nonlinear behavior of the rotor subsystem in forward flight, limits the possibility of achieving satisfactory
performance through linearized time invariant controller theories. In particular, the dynamic system periodicity plays an im-
portant role, so that more sophisticated solutions can be found by exploiting the periodic control theory. A model following
approach to stabilize lag and pitch moments using periodic control has been proposed by Vaghi (10). Periodic vibration con-
trollers were also used by Arcara et al. (11) and by Bittanti and Cuzzola (12); both these papers consider the baseline loads
alleviation by means of IBC as a disturbance rejection problem. Active twist flaps are used by Ulker (13) to reduce hub loads
by a dynamic compensator arising from the periodic H2 and H∞ design.

In the present paper we start from a review of the periodic H2 design and of the periodic output feedback (POF) tech-
nique (14,15) to reduce hub loads. After comparing the two solutions and showing that satisfactory results can be achieved by
using the static POF approach, we test the robustness of the two controllers. It is shown that, even if a simple design model is
used in the design phase of the vibration periodic controllers, satisfactory loads reduction are achieved with a more complex
numerical model that better approximates the real rotor behavior. An important aspect of this study is the analysis of the POF
controller: its design is very simple and involves fewer parameters than those of the H2 controller. It also allows to easily
cover the whole helicopter flight envelope by an easier scheduling.

The paper is organized as follows. In the first part the rotor numerical model and the tools used to simulate the response of
both the design and the validation model are described. In the second part the blade response of the design model is properly
identified and the procedures to synthesize the periodic H2 controller and the POF one are explained. The third and final part
of the work shows the validation model closed loop results and assesses the controllers robustness.

2.0 NUMERICAL MODELING
2.1 Multibody rotor model
Vibratory forces acting on the hub can be reduced by modifying the periodic aerodynamic loads in forward flight condition.
Blades actively twisted by means of piezoelectric actuators distributed along the blade span are considered here. The original
blades of an already available multibody model of the Bo105 rotor (16) are replaced with actively twisted ones. The active
blades use macro-fiber composite (MFC) piezoelectric actuators with interdigitated electrodes. These actuators exploit the
primary piezoelectric direction of polarization, thus allowing to achieve a high strain rate with low actuation power. They are
oriented in such a way that the strain is applied at ±45 to generate maximum torsional authority.

The inertial couplings and structural deformation of the main helicopter rotor are intrinsically nonlinear. Therefore, the use
of a suitable nonlinear model is mandatory. A deformable multibody model, built with the software MBDyn (17), is used. The
swashplate and the pitch links are represented with rigid bodies, while each blade is modeled using five geometrically exact
finite volume nonlinear beam elements (18). MBDyn is able to handle piezoelectrically actuated beams provided the stiffness
and the piezoelectric coupling matrices of the blade section are known. The beam section stiffness and mass data of the
original Bo105 blades are known. The section properties of the actively twisted blades, on the contrary, have to be computed.
An accurate way to compute such properties, still accounting for three dimensional elastic and piezoelectric constitutive laws,
is the semi-analytical approach (19,20,21). The three dimensional continuum is decomposed into the one dimensional domain
of the beam model and the two dimensional domain of the beam section. A finite element discretization of the beam section,
such as that shown in Fig. 2.1, allows to compute, by means of a specialized semi-analytic procedure, the sought generalized
beam section stiffness matrix. This semi-analytical formulation was used to optimize the piezoelectric blade section (22); the
position of the elastic axis and of the center of mass were constrained during the optimization to avoid aeroelastic instabilities.
Rotor data, together with the first frequencies of the original passive blades and of the optimized piezoelectric blades, are
shown in Table 1.

Even if MBDyn is a general purpose multibody software, it contains some specialized elements for the simulation of
helicopter rotors; among them, it provides simple aerodynamic elements, such as the blade element momentum theory and
different linear inflow models. Taken together, these elements allow to quickly approximate the system response with a level
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Table 1: BO 105 model data with original and piezoelectric blade.

Rotor data BO 105 blade Piezoelectric blade

R 4.9 m 4.9 m
p 0.23 m 0.23 m
ϑp 2.5◦ 2.5◦

c 0.3025 m 0.3025 m
ϑtw −8◦ −8◦

Ω 44.4 rad/s 44.4 rad/s
α 3◦ 3◦

νβ 1.11 1.1
νξ 0.69 0.73
νϑ 3.63 3.89

of accuracy that is deemed suitable to reproduce representative vibratory loads in forward flight, at least for a preliminary
design of the controller. The simulations were performed by combining the blade element momentum (BEM) theory with the
Drees inflow model (23). The required data are the lift, drag and moment coefficients of the blade NACA 23012 airfoil, CL, CD
and CM , with respect to the Mach number and to the aerodynamic angle of attach. This rotor model will be later referred to
as the “low fidelity model” because it is based on a low fidelity aerodynamic model. It has been used to design the controllers
through several optimizations.

2.2 Free wake aerodynamic code

A more accurate model is required to validate the controllers performance. The multibody deformable structural model is
detailed, well tested, and validated. The aerodynamic model, on the other hand, is rather simple, and can strongly influence
the predicted loads acting on the blades. In particular, linear inflow models are known to underestimate the harmonic content
of the forces. Computational fluid dynamics (CFD) is usually used to solve the aerodynamic field of every single blade,
while the induced velocity is computed through potential methods, such as the prescribed or free wake method (24). However,
we strive to avoid computationally-intense tasks, such those arising from CFD simulations, because we need to simulate
several seconds of flight to validate the controllers. For this reason we’ve chosen the so-called hybrid approach (25,26,27), thus
treating separately, with different models, the aerodynamic near and far fields of the blade. An improved blade element theory
accounting for unsteady effects is used for the near field representation. The rotor wake is approximated by releasing the
blade tip vortex at each time step; the ensuing free wake dynamic is integrated in time, with the induced velocity computed
according to the Biot-Savart law.

The blade span is divided into strips, with more elements at the blade root and tip; a tip loss factor is defined as well. The tip
loss correction factor F scales the aerodynamic coefficients of each strip and is computed according to the simplified Prandtl’s
formulation (23,28). The lift, drag and aerodynamic moment of the strip is computed through the data sheet for the CL, CD
and CM coefficients that was used for the MBDyn simulations and scaled by the tip loss factor F . The effective aerodynamic
angle of attack, however, is corrected by accounting for unsteady effects; this is achieved by using both the Theodorsen lift
deficiency function for the airfoil motion and the Kussner function, that better represents the interaction between the blades
and the tip vortexes, considered as gusts (29,30).

After computing the loads of every blade element, the equivalent bound circulation is computed through the Kutta-Jukovsky
theorem and the strength of the tip vortex that is going to be released at a given time step is set to the 80% of the maximum
bound circulation of the blade outer portion (31), with a dual-peak model in case of a negative load on the outer portion of
the blade tip (32). An important model parameter is the size of the vortex core. Since we are only using the tip vortex to
approximate the rotor wake, reproducing the physical size of the core vortex would overestimate the blade vortex interaction
loads (27); thus, we assume that the blade tip vortex initial diameter is equal to 50% of the blade chord (33), and that the vortex
aging follows Squire’s law (34,27). The effects of the near wake are taken into account by the unsteady blade element theory
and the tip loss correction; for this reason the far wake represented by the tip vortexes is activated after 30◦ of rotor revolution.
The aerodynamic code is written in Matlab.

MBDyn can perform co-simulations by exchanging data with external programs by means of bidirectional socket com-
munications; a Python communication library is available to ease the interfacing effort. Therefore, the Matlab free wake
code is connected to MBDyn through the open-source software MatPy (35), a useful Python interpreter for Matlab. The
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Figure 2.2: Hart II baseline trim condition, 6° descent flight at µ = 0.15.
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aeroelastic interface between the structural node of the beams and the aerodynamic strip elements is computed through an
energy-conserving moving least squared algorithm (36).

The simulation code has been validated with the experimental data of the Hart II baseline trim condition, a 6° descent
flight at µ = 0.15 (37). Figure 2.2 compares the experimental collective and cyclic pitch control against those computed with
our free wake code, with the blade element theory combined with the dynamic inflow of MBDyn, and with the two hybrid
approaches described by Amiraux (38). In the first approach the lifting line theory is combined with the free wake geometries
of the tip and the root vortexes, while in the second approach a more accurate RANS-based CFD code is used for the near
field aerodynamics of the blade. To better evaluate the BVI prediction and the loads estimation capabilities of the code,
the normal force coefficient of the section at 87%R is compared, for one rotor revolution, in Fig. 2.3. The normal force
coefficient predicted by our code is close to that obtained with the lifting line theory with only the free wake of tip vortex;
it is also able to predict the position of the BVI. However, both codes overestimate the BVI peaks. The more accurate and
computationally demanding RANS model with tip and root vortexes reduces the BVI peaks and better approximates the low
frequency content of the normal force coefficient. Moreover, the lifting line and BEM methods produce a lower peak in CnM2

near 115 deg., while experiment and RANS solver lower peaks are closer to 160 deg. This phase shift will have an impact
on 4/rev loads. Thus, the proposed code is not able to match the more accurate response of the RANS plus tip/root vortexes
schemes. However, it reproduces with a much smaller computational cost the overall response of the real system. It will thus
be used as a verification model to asses the proposed controller robustness.
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3.0 CONTROLLER DESIGN
3.1 Identification of the design model
The design model, based on the low fidelity aerodynamic theory provided by MBDyn, allows to tune the controller with a
reasonable computational effort. The effect of the control applied to one blade on the forces on the other blades is almost
null due to the very simple aerodynamic model. Therefore, each blade is considered independent and the IBC controller is
designed by considering only a single blade. A periodic state space model linearized around an equilibrium configuration is
required for the periodic control design. The linearized input/output relation between the voltage V applied on the blade and
the blade sensors measures is of interest. The blade root shear force Fz and five vertical accelerations at locations uniformly
distributed along the blade span are chosen as outputs in order to well represent the blade response for the identification.

Dealing with a helicopter in forward flight, the system is periodic. This has to be taken into account while identifying the
model. Classical identification procedures for linear time invariant (LTI) systems cannot be used for periodic systems. Thus,
a periodic subspace identification algorithm (13) is used to find a linear discrete-time periodic (LTP) model of the blade in the
form

xk+1 = Akxk +Bkuk,

yk = Ckxk, (3.1)

where the system matrices have period N. The input/output time histories signals from the numerical simulations are organized
in input/output Hankel matrices Uk,s and Yk,s for k = 1...N as follows

Uk,s =


uk uk+1 · · · uk+s−1

uN+k uN+k+1 · · ·
...

... · · ·
...

u(n−1)N+k · · · u(n−1)N+k+s−1

 , (3.2)

Yk,s =


yk yk+1 · · · yk+s−1

yN+k yN+k+1 · · ·
...

... · · ·
...

y(n−1)N+k · · · y(n−1)N+k+s−1

 , (3.3)

where N is the period, n is the total number of simulations and s is the length of each experiment. The Hankel matrices are
computed using data from the numerical simulations. Considering the QR factorization of the compound matrices

[
Uk,s Yk,s

]
=
[

Q1k Q2k

][ R11k R12k
R21k R22k

]
, (3.4)

the observability matrix Ok is given by the row space of matrix R22k . It can be computed through the singular value decom-
position (SVD)

R22k = UkΣkVT
k (3.5)

Ok = ṼT
k . (3.6)

The order of the identified system is chosen according to the magnitude of the singular values of Σk. Then, the observability
matrix is computed as ṼT

k , which contains the first rows and columns of VT
k up to the defined system order. Afterward, the

matrices Ak and Ck can be obtained by exploiting the observability matrix at the instants k + 1 and k (39,13). The system
periodicity is imposed by setting ON+1 = O1.

Matrices Bk and Dk are computed by minimizing the squared 2-norm error between the real and the model outputs, yreal
and y respectively:

min
Bk,Dk

‖ yreal− y ‖2
2 . (3.7)

The rotor is trimmed at an advance ratio µ = 0.23 so to reproduce reasonable hub forces, TZ = 20010 N, MX = 746 Nm and
MY = −85 Nm, with a shaft angle of α = 3◦ as in Fig. 3.1. The blade periodic loads and the accelerations for the reference
trimmed configuration are saved; they are subsequently subtracted from the excited response signals to linearize the system
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around the trimmed configuration. The blade are excited with a random voltage with an amplitude of 40 V filtered above 6/rev
to limit higher harmonics in the dynamic response. Being the Bo105 a four blades rotor, the most important harmonics for the
vibratory hub loads are the 3/rev and the 4/rev; all output signals have been filtered before the identification to consider only
these harmonics, hence reducing the size of the state space model. The controllers should minimize the 4/rev harmonic of the
blade root shear force Fz to reduce the hub vertical force and reduce the 3/rev harmonic as well to alleviate the vibratory loads
associated to the moments of the blade root loads. Note that for the vertical force and the torque of the hub only the steady and
the multiples of the 4/rev harmonics of the blade root force and moment are not filtered by the hub. On the other hand, the
multiples of the 4/rev in plane forces and moments of the hub, with respect to the rotor disk, are generated by the multiples
of the 3/rev and 5/rev blade loads and moments. The aeroelastic multibody simulation requires a small integration time step;
the simulations are performed with N = 140 time steps for every rotor revolution. The direct identification of such signals
will lead to the computation of 140 linear systems spanning the period. The system outputs are decimated to N = 28 time
steps per rotor revolution in order to reduce the computational burden of both the identification and the controller design, still
approximating the outputs with sufficient accuracy. Hints about the order of the identified system can be found by analyzing
the singular value magnitudes of the matrix R22k at each time step.The best compromise between data fitting and system order
is given by retaining the most important singular values. For example, Fig. 3.2 shows the singular values computed for the
first time step. Based on the singular values, the chosen linear periodic model of the blade is a 14th order system for every
time step spanning the period.

After identifying the linearized blade model, performance specifications and model disturbances have to be introduced in
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the generalized plant. The block diagram of the complete design model is shown in Fig. 3.3, where z are the controlled outputs,
y are the measures, w are white noise disturbances and u the applied blade voltage. The goal is to minimize the blade root
shear force Fz. The shaping filters Wdist models the baseline loads, which are now reintroduced as output disturbances of the
system. Figure 3.4 shows the shaping filter that models the baseline load of the tip blade acceleration; since the measures have
been previously filtered, only the 3/rev and the 4/rev harmonics of the baseline signals have to be reproduced. The sensors
noise is modeled with white noises having an amplitude of 0.1. The performance of the controller are defined by means of the
frequency weighting function Wper f , shown in the block diagram of Fig. 3.3, to impose the reduction of the blade root load Fz
harmonics; it is adjusted in the controller design phase to obtain the best vibration reduction. The generalized plant model is
thus described with the following linear periodic model

xk+1 = Akxk +B1k wk +B2kVk,

zk = C1k xk +D11k wk +D12kVk, (3.8)
yk = C2k xk +D21k wk.

It can be noticed that there is no direct feedthrough between the input voltage and the sensor measures, i.e. matrix D22 = 0.
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3.2 H2 Periodic controller
This section describes the design of the optimal H2 controller that stabilizes the system and minimizes the H2 norm of the trans-
fer function between the plant disturbance and the desired performance. Starting from the identified generalized plant model
a dynamic output feedback controller can be found by solving two Discrete Time Periodic Riccati Equations (DTPRE) (40)

corresponding to the filtering and the state feedback control problem:

Qk+1 = AkQkAT
k +B1k BT

1k−
(
AkQkCT

2k
+B1k DT

21k

)
(3.9)

+
(
D21k DT

21k
+C2k QkCT

2k

)−1 (AkQkCT
2k
+B1k DT

21k

)
,

Pk = AT
k Pk+1Ak +CT

1k
C1k −

(
AT

k Pk+1B2k +CT
1k

D12k

)
(3.10)

+
(
DT

12k
D12k +BT

2k
Pk+1B2k

)−1 (AT
k Pk+1B2k +CT

1k
D12k

)
.

A cyclic QZ decomposition method is used for the solution of eqs. 3.9 and 3.10 (41,42). Once the solutions of the Riccati
equations have been obtained, the periodic control system can be easily defined by (40,13)

ξk+1 = AC
k ξk +BC

k yk, (3.11)

Vk = CC
k ξk +DC

k yk.

The controller matrices AC
k , BC

k , CC
k and DC

k can be computed by following the procedure shown in the Appendix (14).
The controller has the same order of the generalized plant of eq. 3.8, and depends on the selected frequency weighting

functions and shaping filters for performance specification and the disturbance modeling. A good compromise between
control activity and loads alleviation is found by using the performance frequency weighting function Wper f shown in Fig. 3.5.
The resulting periodic controller is a 44th order dynamic compensator with period N = 28. The controller is designed for the
first blade; the same controller is used for the other blades after applying a time shift to its matrices to account for the system
periodicity.

3.3 Periodic output feedback controller
The second approach analyzed in this paper is a periodic static controller. The control law is a direct feedback relationship of
the form

uk = Kkyk,

where the gain matrix Kk can either be periodic with period N or a constant matrix equal for all sample times. The static
output feedback control law is obtained by minimizing the quadratic performance index

J = E

[
∞

∑
k=0

(
zT

k Qkzk +uT
k Rkuk

)]
, (3.12)
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where Qk and Rk are symmetric periodic user defined weighting matrices. No closed form solutions can be found to this
problem. Its solution must be found by resorting to a numerical optimization procedure. The problem can be reformulated
as (43)

J(K ) = tr(σPG ), (3.13)

∇K J(K ) = 2(RK C 2 +BT
2 σPA )S C T

2 , (3.14)

where the gradient of the cost function is provided as well, since many optimization algorithms require it. The script notation
X indicates the block diagonal matrix X = diag(X1, . . . ,XN) related to the cyclic sequence of the periodic matrix Xk;
the notation σX denotes the K-cyclic shift σX = diag(X2, . . . ,XN ,X1). Matrices P and S satisfy the Discrete Periodic
Lyapunov Equations (DPLEs)

P = A
T

σPA +Q (3.15)

and
σS = A S A

T
+G (3.16)

respectively, where A = A +B2K C2 is the closed loop matrix and Q = Q+C T
2 K T RK C2. Algorithms for the solution

of DPLEs are described by Varga (44) and Varga and Pieters (43). Matrix G is defined as G = diag(0, . . . ,0,X0), where X0
represents the influence of initial conditions and disturbances on the state dynamics defined as X0 = E

[
x0xT

0
]
. In the closed

loop system the perturbed initial conditions are

x0 = x0 +(B1N +B2N KND21N )w. (3.17)

Assuming null cross-correlation between the initial conditions x0 and the disturbances w, i.e. E
[
x0wT

]
= 0, the matrix X0 is

given by

X0 = E
[
x0xT

0
]
+B1N E

[
wwT ]BT

1N
+B2N KND21N E

[
wwT ]BT

1N
+ (3.18)

B1N E
[
wwT ]DT

21N
KT

NBT
2N

+B2N KND21N E
[
wwT ]DT

21N
KT

NBT
2N
,

where the variance matrices are approximated as identity matrices.
A constant (1×6) static gain matrix K is chosen for the control law. Since the dynamic model of the blade is already stable,

the initial solution for the optimization procedure can be assumed as the null matrix. The performance specification has been
adapted to achieve satisfactory results, resulting in a decrease of the weight effect on the 4/rev harmonic; the hand-tuned
frequency weighting function Wper f , shown in Fig. 3.6, is similar to the H2 controller weighting function of Fig. 3.5. The
performance weighting matrix Qk of the cost function J is the identity matrix, because the performance specifications have
been taken into account by Wper f , and is kept constant for the whole period. The weight matrix Rk, that prescribes further
limitation for the control signal, is tuned until satisfactory loads reduction is achieved. In this example it has a value of 5,000.
The design of this controller is faster than that of the H2 one because of the smaller number of parameters involved in the
optimization and because the solution of the two DPLEs is less demanding than the solution of the DTPREs (42).
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4.0 SIMULATION RESULTS
4.1 Closed loop analysis on the design model

The performance of the periodic controllers, designed on the multibody rotor model with low fidelity aerodynamics, are shown
at µ = 0.23. The periodic controllers are implemented in Simulink environment using S-functions. Rate-transition blocks are
used before and after the controller because of the different sample times between the multibody simulation and the periodic
controller.

The vibration reduction achieved by the periodic controllers are summarized in Fig. 4.1. Although a significant passive
load reduction is obtained by simply replacing the Bo105 blades with the piezoelectric ones, both controllers allow to further
alleviate the hub loads. The H2 controller reduces the 4/rev harmonic of the hub force and moments FZ , MX and MY by 24%,
60% and 86%, respectively. The static output feedback controller achieve a reduction of 43%, 65% and 58%. Both solutions
are satisfactory, and their performances are comparable. The H2 controller has a better capability to reduce the moment MY ,
while the direct output feedback approach better alleviates FZ . On the average, the simpler static output feedback controller
can be a valid substitute of the H2 controller dynamic compensator, in spite of its faster algorithm and fewer design parameters.
Note also that harmonics higher than the 4/rev are only marginally excited.

The voltage applied on the first blade is shown in Fig. 4.2. The control signal is a sequence of steps because of the
controller sampling time. The control effort remains quite low, and doesn’t exceed 80 V in both simulations. Note also that
the control voltage computed by the static output feedback control has a lower frequency content than that of the H2 dynamic
compensator; this may lead to better robustness properties, since it doesn’t excite high frequency harmonics that may not have
been considered in the controller design phase.

4.2 Controller robustness validation

In this section the periodic controllers designed using the simple aerodynamic model are tested with the model coupled with
the free-wake code. Figure 4.3 shows the computed rotor wake and the nondimensional inflow for the baseline condition.
Dealing with the time marching wake of the tip vortexes, it is possible to model the blade vortex interaction and to have a
good approximation of the induced velocity of the rotor. This validation model is a useful test-bed for robustness validation
because the dynamics of the blades is different, since the swashplate setting is changed to reach the same trim configuration
of the previous model. Furthermore, the induced velocity, that is better approximated, increases the harmonic content of the
aerodynamic loads. In fact, the baseline loads of Fig. 4.4, estimated with the free wake model, are one order of magnitude
higher than those those of Fig. 4.1, that were estimated with the simple inflow model.

Even if the improved aerodynamic model introduces new dynamics and raises the hub loads, none of the two controllers
destabilize the rotor system, and they both achieve a good reduction of the loads. Both controllers reduce by more than 75%
the moment MX of Fig. 4.4b. The static output feedback controller seems to be more robust with respect to the force FZ of
Fig. 4.4b, and allows a larger reduction than that of the H2 controller. This behavior could be explained by the fact that the
H2 control leads to an augmented periodic state space dynamic system with many controller parameters to be designed and
additional dynamics in the closed loop system. On the contrary, the direct output feedback control law is based on a simple
gain matrix that is kept constant throughout the period of the system.

Figure 4.5 shows the applied control voltage. The control activity is significantly higher than that of Fig. 4.2 because of the
higher loads; still, it remains bounded and acceptable, since it is not higher than 800 V. This somewhat high voltage for control
purposes may be a problem for crew safety. It is however within the range of what can be found in the literature. For example,
in (2) the active twist blades are excited with an amplitude of 1,000 V to assess vibrations reduction capabilities, while in (45) a
voltage of ±500 V is applied for blade de-icing.

5.0 CONCLUSIONS
A multibody numerical model of the Bo105 main rotor is modified by adding actively twisted blades, and used to design
and implement individual blade control for hub vibration reduction relying on the periodic control theory. After identifying
a periodic linearized model of the blade response, both the dynamic compensator arising from the H2 periodic control theory
and the periodic static output feedback controller, which minimize the 3/rev and the 4/rev harmonics of the blade root shear
force, have been designed and tested. The closed loop simulations are carried out by coupling MBDyn and Simulink. The
controllers are validated on a more sophisticated free wake aerodynamic model.

The design model shows a significant vibratory loads reduction with a small control effort, especially for the two hub
moments MX and MY . Furthermore, the performance of the two periodic controller appears to be similar. This means that
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Figure 4.1: Vibrations reduction on the low fidelity model at µ = 0.23.
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Figure 4.4: Validation of the controllers on the free wake model using the piezoelectric blade.
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Figure 4.5: Applied voltage on blade 1 in the validation phase, µ = 0.23, free wake.

the direct periodic output feedback, which involves fewer design parameters and has a faster design algorithm, can be a valid
substitute of the optimal H2 approach. Moreover, using only a gain matrix in the control law would allow to cover all the flight
envelope by simply interpolating , with a gain scheduling technique, the gain matrices. It would thus be possible to avoid the
problems that could arise when interpolating state space models (46,47).

The validation model, with the free wake aerodynamic code, shows that taking into account the periodicity of the rotor in
forward flight leads to robust controllers even if model uncertainties are not considered in the design phase. In fact, there is
no spillover, and both of the controllers manage to reduce vibratory loads with satisfactory performance. These results seems
promising for a practical implementation of such controllers.

It must be noted, however, that the robustness of these periodic controllers still has to be thoroughly investigated for a
large number of trim configurations. The effectiveness of the envisioned static output feedback gain scheduling has also to be
assessed.
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Appendix
Controller Matrices Reconstruction
The controller matrices AC

k , BC
k , CC

k and DC
k of eqs. 3.11 can be computed by following the procedure outlined in (13) and

reported here for completeness. It can be derived by the filtering and control theory in H2 described in (40) by combining the
observer and the full information state feedback control.

After solving the two periodic Riccati eqs. 3.9 and 3.10, the sought matrices are given by

AC
k = Ak−LkC2k +B2k Kk−B2k LO

k C2k , (5.1)

BC
k = Lk +B2k LO

k , (5.2)

CC
k = Kk−LO

k C2k , (5.3)

DC
k = LO

k , (5.4)

http://algoholic.eu/matpy/
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where

Lk =
(
AkQkCT

2k
+B1k DT

21k

)(
C2k QkCT

2k
+D21k DT

21k

)−1
, (5.5)

LO
k =

(
KkQkCT

2k
+WkDT

21k

)(
C2k QkCT

2k
+D21k DT

21k

)−1
, (5.6)

Kk =−
(
BT

2k
Pk+1B2k +DT

12k
D12k

)−1 (BT
2k

Pk+1Ak +DT
12k

C1k

)
(5.7)

and
Wk =−

(
BT

2k
Pk+1B2k +DT

12k
D12k

)−1 (BT
2k

Pk+1B1k +DT
12k

D11k

)
. (5.8)

Should matrix D22k be non null, i.e. should direct feedthrough be present, then the matrices would have to be modified
into (48)

ÃC
k = AC

k −BC
k D22k T−1

k CC
k , (5.9)

B̃C
k = BC

k −BC
k D22k T−1

k DC
k , (5.10)

C̃C
k = T−1

k CC
k , (5.11)

D̃C
k = T−1

k DC
k , (5.12)

where
Tk = DC

k D22k + I (5.13)

and I is the identity matrix.
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