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Application of the scaled fundamental equation of state of Balfour et al. (1978) based
upon universal critical exponents, demonstrates that there exists a bounded thermo-
dynamic domain, located within the vapour-liquid equilibrium region and close to the
critical point, featuring so-called negative non-linearity. As a consequence, rarefaction
shock waves with phase transition are physically admissible in a limited two-phase re-
gion in the close proximity of the liquid-vapour critical point. The boundaries of the
admissibility region of rarefaction shock waves are identified from first-principle conser-
vation laws governing compressible flows, complemented with the scaled fundamental
equations. The exemplary substances considered here are methane, ethylene and carbon
dioxide. Nonetheless, the results are arguably valid in the near-critical state of any com-
mon fluid, namely any fluid whose molecular interactions are governed by short-range
forces conforming to 3-dimensional Ising-like systems, including, e.g., water. Computed
results yield experimentally feasible admissible rarefaction shock waves generating a drop
in pressure from 1 to 6 bar and pre-shock Mach numbers exceeding 1.5.

1. Introduction

The admissibility of expansion shock waves requires the so-called fundamental deriva-
tive of gas dynamics, introduced by Hayes (1958) and Thompson (1971) as

Γ ≡ 1 +
ρ

c

(
∂c

∂ρ

)
s

, (1.1)

to be negative or to locally change its sign. In equation (1.1), ρ is the density, s is the
entropy and c is the thermodynamic sound speed, which is defined as c ≡

√
(∂P/∂ρ)s,

where P is the pressure. Note that for ideal gases Γ is always positive under the assump-
tion of constant specific heat capacities, such as for example air at standard temperature
and pressure, and consequently expansion shock waves are not physically admissible in
constant-specific-heat dilute gases, a well known result from gasdynamics textbooks, see
e.g., Thompson (1988).

† Email address for correspondence: p.colonna@tudelft.nl
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Previous studies on non-classical gasdynamics, namely, the dynamics of fluids with
Γ < 0, focused on so-called Bethe-Zel’dovich-Thompson (BZT) fluids see e.g. (Thompson
1971; Lambrakis & Thompson 1972; Thompson & Lambrakis 1973; Cramer & Kluwick
1984; Cramer & Sen 1986, 1987; Cramer 1989; Cramer et al. 1992; Colonna & Guardone
2006; Colonna et al. 2007). BZT fluids are characterized by a highly complex molecular
structure and molar mass and are predicted to exhibit negative-Γ values in the single
phase vapour region to the right of the vapour-liquid critical point in the pressure- specific
volume (P -v) thermodynamic plane. According to Guardone et al. (2004), the negative-Γ
region of a BZT fluid is approximately bounded by 0.75 < P/PC < 1.0, 1.4 < v/vC < 2.5
and 0.96 < T/TC < 1.01, where T is the temperature and the subscript C indicates
critical-point values. Note that, since the critical region is approximately bounded by
0.96 < T/TC < 1.04 and 2/3 < v/vC < 2, see Anisimov et al. (1992), said region of
negative non-linearity occurs partly in this domain. Numerous authors (Thompson 1971;
Thompson & Lambrakis 1973; Cramer et al. 1986; Cramer & Sen 1986; Cramer 1987,
1989, 1991; Cramer & Fry 1993; Cramer & Kluwick 1984; Kluwick 1993, 2001; Menikoff
& Plohr 1989; Argrow 1996; Brown & Argrow 1997, 2000; Fergason & Argrow 2001;
Fergason et al. 2001, 2003; Colonna et al. 2006, 2007; Zamfirescu et al. 2008; Colonna
et al. 2008, 2009), identified diverse non-classical phenomena in BZT fluids, including
rarefaction shock waves, composite wave fields such as mixed compressive shock-fans or
expansive fan-shock-fans and double sonic shock waves. Guardone et al. (2009) identified
the so-called Rarefaction Shock Region (RSR) of selected BZT fluids and its dependence
on the molecular complexity of the fluid. The RSR is the domain bounded by the vapour-
liquid equilibrium (VLE) curve and by the locus of the fluid states characterized by
double-sonic rarefaction shock waves, namely, shock waves of finite intensity featuring
sonic pre- and post shock conditions in the shock reference. The RSR is located in the
single-phase vapour region and it embeds the negative-Γ domain.

The focus of this study is on non-classical gas dynamics effects other than those occur-
ring in BZT fluids. In fact, the goal is to determine the admissibility region of rarefaction
shock waves, namely, the RSR, in the vicinity of the vapour-liquid critical point, where
scaled fundamental equations predict the existence of a negative-Γ region for typical
fluids.

It has been documented in a recent work of Nannan et al. (2013) that due to critical-
ity, the fundamental derivative of gas dynamics becomes negative in the vapour-liquid
equilibrium region of pure typical fluids. This result is valid under the assumption that
the phases are homogeneously and finely dispersed, i.e., there is neither agglomeration,
nor stratification as a consequence of a gravitational or some other potential force field.
In addition, the influence of surface tension is assumed negligible; near criticality the
surface tension has low values and goes to zero at the critical point itself. Remark that
here ‘typical fluid’ implies a substance wherein the molecular interactions are governed
by short-range forces corresponding to a so-called 3-dimensional Ising-like system (Sen-
gers & Levelt-Sengers 1984): examples of such fluids are water, carbon dioxide, methane
(alkanes) and sulphur hexafluoride. Vapours of metals and salts as well as plasmas are
therefore excluded. In the following, methane, ethylene and carbon dioxide are chosen as
exemplary typical fluids.

The fact that Γ is negative in the two-phase critical region—see for example figure 1 for
methane and the thermodynamic model discussed in §2)—implies that expansion shock
waves, specifically those exhibiting phase transition such as condensation shock waves,
are physically admissible (Nannan et al. 2014). Moreover, since positive values of Γ are
expected in the VLE region sufficiently far from the vapour-liquid critical point, rarefac-
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tion shock waves characterized by sonic post-shock Mach numbers as well as composite
wave fields are physically admissible, similarly to what observed for BZT fluids.

Two important remarks arguably put the following treatment in the correct perspec-
tive. Firstly, this study is different from the work of Thompson et al. (1986), in the sense
that wave fields and shock waves discussed therein are a consequence of Γ being negative
infinity (−∞) at the bubble line due to the discontinuity of the thermodynamic sound
speed at the phase boundary. The cited reference reports how the thermodynamic sound
speed in the VLE region is always less than or at most equal to the sound speed in
the single-phase region at the saturation boundary, see equation 15 ibid. Secondly, it is
worth noting that Borisov et al. (1983) and Kutateladze et al. (1987) document the ex-
perimental observation of a steady rarefaction shock wave, claiming that it occurs in the
single-phase vapour region of fluid R-13 (CClF3). However, on the basis of arguments and
computations presented by Fergason et al. (2001); Fergason & Argrow (2001); Fergason
et al. (2003) and recently by Nannan et al. (2013), the results of Borisov et al. provide
inconclusive evidence of the occurrence of such an event. The measured pressure signal
can be explained in different ways, and one of the hypotheses is that the flow under
scrutiny occurred partly within the two-phase thermodynamic region.

The structure of this document is as follows: §2 presents an overview of the equation
of state adopted to calculate the fluid properties, and summarizes results for the funda-
mental derivative of gas dynamics in the vapour-liquid equilibrium region. Sections 3–5
review the so-called shock admissibility conditions, which are employed to determine, int.
al., the physical admissibility of rarefaction shock waves, and the fluid states which max-
imize the speed and pressure change across the wave. These thermodynamic states form
the locus of post-shock states of pure rarefaction shock waves admitting, for a given pre-
shock state, sonic post-shock states, and define the region of admissibility of rarefaction
shock waves within the VLE region. Section 6 presents a discussion on the assumptions
on which the present computations are based, and provides concluding remarks.

2. The scaled fundamental equation of state

As it is well known, several thermodynamic and transport properties either diverge
or go to zero at the vapour-liquid critical point; the slope of the P -T curve is however
an exception, see, e.g. Levelt-Sengers (1970). Notable examples of anomalous trends in-
clude the weak divergence of the isochoric heat capacity cv, the strong divergence of the
isothermal compressibility κT ≡ −1/v (∂v/∂P )T , the weak approach to zero of the ther-
modynamic (zero-frequency) sound speed at the critical point, and the strong divergence
of the thermal conductivity, see for example the works of Michels et al. (1962); Albright
et al. (1987); Kurumov et al. (1988); Wyczalkowska & Sengers (1999) and Levelt-Sengers
et al. (1983a,b) and listed references therein reporting corresponding experimental data.
The Helmholtz free energy is non-analytic at the critical point, as the direct consequence
of the divergence of cv near the critical point. Consequently, classical equations of state
(EoS) cannot correctly model the vapour-liquid critical region. The limitations of cubic
equations of state in this respect are well-known, but even the modern, most accurate
multi-parameter equations of state, including those incorporating so-called critical terms
in their functional form (Lemmon et al. 2007), cannot accurately predict the primary
thermodynamic properties and even more so secondary or derived properties at the crit-
ical point. Colonna et al. (2009) and Nannan et al. (2013) pointed out that even the
highly accurate reference model of Wagner Setzmann containing critical terms cannot
provide correct evaluations of Γ if the considered fluid states are close enough to the
critical point.
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The critical-point thermodynamics of fluids whose molecular interactions are governed
by short-range forces, also called 3-dimensional Ising-like systems, is described via scaled
fundamental EoS’s (Levelt-Sengers 1970; Wegner 1972; Levelt-Sengers et al. 1983b; Sen-
gers & Levelt-Sengers 1984). In particular, near the critical point the thermodynamic
potential of a spin system represented by a Landau-Ginzburg-Wilson Hamiltonian can
be described by an expansion as provided by the equation of state (EoS) in (2.2) below.
The EoS (2.2) is formulated in terms of P/T as a function of 1/T and µ/T , where P/T is
the potential and µ is the chemical potential. Note that P (µ, T ) is a fundamental (canon-
ical) thermodynamic equation, therefore all properties can be determined from it using
combinations of its first-, second, and/or higher-order derivatives, see Callen (1985). The
EoS is made dimensionless by critical-point values, namely

P̃ ≡ P

T

TC

PC
, T̃ ≡ −TC

T
, µ̃ ≡ µ

T

ρCTC

PC
. (2.1)

The functional form of the scaled fundamental equation of state reads

P̃ = 1 +

3∑
i=1

P̃i

(
∆T̃
)i

+ ∆µ̃
(

1 + P̃11∆T̃
)

+ ∆P̃ . (2.2)

In equation (2.2), P̃i=1,...,3 and P̃11 are pressure-background parameters and are fluid-
specific. Furthermore,

∆T̃ = T̃ + 1, ∆µ̃ = µ̃− µ̃C −
4∑
i=1

µ̃i

(
∆T̃
)i
, (2.3)

where µ̃i=1,...,4 and µ̃C are thermal-background parameters peculiar to each fluid. The

singular part of equation (2.2), i.e., ∆P̃ , is expressed as a function of the universal
critical exponents β, δ and ∆1, of the substance-specific parameters a, k0 and k1, and of
the auxiliary functions p0 (θ), p1 (θ) and r. θ and r are parametric variables allowing the
model to conform with the asymptotic and symmetry requirements of the Ising model.

The dependence of ∆P̃ on variables r and θ was first approximated by Schofield et al.
(1969) and later extended by Balfour et al. (1978), who introduced the first correction-
to-scaling term, resulting in the so-called revised and extended-linear model, which has
been used for the computations herein. Its functional expression reads

∆P̃ = arβ(δ+1)
[
k0p0 (θ) + r∆1k1p1 (θ)

]
. (2.4)

Variables r and θ in equation (2.4) describe respectively the distance of a thermodynamic
state with respect to the critical point and the location of a thermodynamic state on a
line of constant r, such that θ = +1 represents the saturated liquid line and θ = −1
represents the saturated vapour line (−1 6 θ 6 +1) and r is bounded and at least zero.
The functions ∆T̃ and ∆µ̃ can be rewritten as, see Balfour et al. (1978):

∆T̃ = r
(
1− b2θ2

)
− c∆µ̃, ∆µ̃ = arβδθ

(
1− θ2

)
, (2.5)

where b2 is a universal constant and c is a fluid-specific parameter. All primary and
derivative thermodynamic properties in the single and two-phase region can be obtained
from equation (2.2), see Nannan et al. (2013) for relevant expressions.

Starting from equations (2.1)–(2.5), Nannan et al. (2013) showed that: i) Γ weakly
diverges to large positive values as the critical point is approached from the single-
phase region, namely, the power of divergence of Γ as a function of the dimensionless
temperature difference with respect to the critical temperature is less than unity, and ii)
Γ weakly diverges to large negative values as the critical point is approached along the
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Figure 1. The vapour-liquid critical region of methane computed using the scaled fundamental
equation of state of Kurumov et al. (1988). a) Isolines of r and θ in the density-temperature plane.
The locus θ = −1 is the dew line, θ = 1 is the bubble line. The region limited by the solid blue
lines represents the validity domain of the scaled fundamental EoS for methane as reported by
Kurumov et al. (1988) under the hypothesis of thermodynamic equilibrium. b) Pressure-volume
thermodynamic plane. Points Q and R are located on the Γ = 0 line traversing the VLE region
in the limit of the vapor mass fraction $ approaching 0 and 1, respectively; Γ → −∞ as the
critical point is approached from the two-phase region. The shaded area denotes the domain of
negative non-linearity, i.e, Γ < 0. For comparison, some iso-Γ lines have also been computed
using the reference EoS of Setzmann & Wagner (1991); these are the red dashed-dotted lines.

critical isochore from the vapour-liquid equilibrium region, thus implying the existence of
a domain of so-called negative non-linearity in any typical fluid, where Γ < 0. Figure 1b
shows the thermodynamic region encompassing states featuring negative Γ for methane
(CH4), calculated using the substance-specific parameters reported by Kurumov et al.
(1988). In particular, along the dew-line one has,

lim
T↑TC

Γ(P sat(T ), T ) ∝ lim
T↑TC

[
T − TC

T

]−α̃
= lim
T↑TC

−T − TC

T

∣∣∣∣T − TC

T

∣∣∣∣−(α̃+1)

→ +∞,

(2.6)
where P sat(T ) is the saturation pressure at temperature T and α̃† is the critical exponent,
α̃ = 0.890 ± 0.003, see Nannan et al. (2013). Note that α̃ is a universal constant for all
fluids belonging to the class of 3-dimensional Ising-like systems. Similarly, along the
critical isochore in the single-phase region,

lim
T↓TC

Γ(ρC, T ) ∝ lim
T↓TC

T − TC

T

∣∣∣∣T − TC

T

∣∣∣∣−(α̃+1)

→ +∞ (2.7)

The divergence of Γ to positive values in the single-phase critical region is in agreement
with the observation of Emanuel (1996) (see also Gulen et al. (1989) and Kluwick (1995)).
If the critical point is approached along the critical isochore from within the vapour-liquid
equilibrium region, Γ weakly diverges to large, negative values according to

lim
T↑TC

Γ(ρC, T ) ∝ lim
T↑TC

T − TC

T

∣∣∣∣T − TC

T

∣∣∣∣−(α̃+1)

→ −∞ (2.8)

† α̃ should not be confused with α, which is a universal constant used in common literature
on critical point effects. Herein, α̃ = 1− α.
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Figure 2. The vapour-liquid critical region of ethylene computed using the scaled fundamental
equation of state of Sengers et al. (1976). a): Representation in the density-temperature plane
in terms of the parametric variables r-θ. The region delimited by the solid blue lines shows the
validity domain of the scaled fundamental EoS of Sengers et al. (1976) under the hypothesis
of thermodynamic equilibrium. b): Pressure-volume thermodynamic plane. The shaded area
denotes the domain of negative non-linearity, i.e, Γ < 0. For comparison, some iso-Γ lines
have also been computed using the reference EoS of Smukala et al. (2000); these are the red
dashed-dotted lines.

It is remarkable that the above power-law relations (2.6)–(2.8) are valid for any pure
typical fluid belonging to the 3D-Ising universality class.

Isolines of the fundamental derivative of gasdynamics Γ are reported in figure 1b for
methane, which exhibits a region of negative non-linearity bounded by the dew and
bubble line and by the Γ = 0 isoline QR, where states Q and R are respectively located
in the limit of the vapor fraction going to zero and one (remark that the region of
negative non-linearity has a vapour mass fraction between zero and one, 0 < $ < 1).
The VLE region and the negative-Γ region are shown in figures 2 and 3 for ethylene
(C2H4; EoS of Sengers et al. (1976)) and carbon dioxide (CO2; EoS of Albright et al.
(1987)), respectively.

Since the negative-Γ region extends outside the region of validity of the scaling EoS for
C2H4 and CO2, reference EoS are used to confirm that predictions from scaling laws are
qualitatively, though not quantitatively, valid also away from the critical point, see figures
1b, 2b and 3b. Note that reference EoS are not valid in the close proximity of the critical
point and therefore one cannot expect that the iso-Γ lines (including the curvature)
computed using reference EoS are coincident with those obtained by the scaling laws
in the critical point region. A thoroughly comparison of the values of the fundamental
derivative of gasdynamics Γ computed by reference and scaling EoS is reported in Nannan
et al. (2013).

The existence of fluid thermodynamic states characterized by negative values of Γ in
the near-critical vapor-liquid equilibrium region results in the admissibility of expansive
shock waves in and around this thermodynamic domain. The derivation of the conditions
for shock wave admissibility is presented in the following section.
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Figure 3. The vapour-liquid critical region of carbon dioxide computed using the scaled funda-
mental equation of state of Albright et al. (1987). a): Representation in the density-temperature
plane in terms of the parametric variables r-θ. The region circumscribed by the solid blue lines
corresponds to the validity domain of the EoS as provided by Albright et al. (1987) under the hy-
pothesis of thermodynamic equilibrium. b): Pressure-volume thermodynamic plane. The shaded
area denotes the domain of negative non-linearity, i.e, Γ < 0. For comparison, some iso-Γ lines
have also been computed using the reference EoS of Span & Wagner (1996); these are the red
dashed-dotted lines.

3. Admissibility conditions for shock waves

Once a shock wave is formed, a description of the wave field not accounting for the shock
wave structure requires the use of the Rankine-Hugoniot jump conditions. The deduction
of these relations between pre- and post-shock states, A and B respectively, is based upon
the laws of conservation of mass, momentum and energy applied to a control volume
which locally encloses the shock front and which moves with the shock wave velocity.
Under the additional hypothesis that the shock wave represents a discontinuity separating
two regions of thermodynamic-equilibrium states, as seen by an observer moving with
the shock wave, and after some symbolic manipulation, the following system of equations
is obtained

J = ρAuA · n = ρBuB · n (3.1)

PB − PA + J2 (vB − vA) = 0 (3.2)

hB − hA + 1
2 (vA + vB) (PB − PA) = 0, (3.3)

where J is the mass flux across the shock wave, u is the velocity vector, n is the normal
vector to the shock wave surface and h = h(P, v) is the enthalpy. Relation (3.3), which
involves thermodynamic quantities only, is usually referred to as the shock adiabat or
Rankine-Hugoniot curve and it provides the implicit definition of the post-shock pres-
sure PB as a function of the post-shock specific volume vB for a given pre-shock state
(PA, vA), namely, PB = PHR(vB;PA, vA). Relation (3.2) is the so-called Rayleigh line.
In the pressure-specific volume (P -v) diagram, the Rayleigh line is a straight line with
slope −J2 connecting points (PA, vA) and (PB, vB). The intersection of the Rayleigh line
and the shock adiabat in the P -v diagram implies simultaneous conservation of mass,
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momentum and energy across the shock wave connecting points A and B, namely,

PRH(vB;PA, vA) = PA − J2 (vB − vA) (3.4)

for a given value of J .
Yet, relations (3.1)–(3.3) are insufficient to discern physically admissible from inadmis-

sible solutions, as it is typical of the application of the first law of thermodynamics only.
Since a shock wave exhibits non-negligible gradients in temperature and velocity, the
entropy of the flow passing through the shock wave must increase, because irreversible
processes occurring within the shock wave. In addition to the entropy-increase criterion
prescribed by the second law of thermodynamics, the Lax-Oleinik condition for mechan-
ical stability (Lax 1957; Oleinik 1959) must also be fulfilled. Mathematically, the set of
equations (3.1)–(3.3) is extended to include

[s] > 0, (3.5)

MaAn > 1 > MaBn. (3.6)

The equality sign in condition (3.5) is valid for infinitely weak shock waves. In condition
(3.6), representing the Lax-Oleinik condition, MaAn ≡ (un/c)A and MaBn ≡ (un/c)B.

The analysis of shock wave admissibility is facilitated by the use of graphical infor-
mation obtained from the P -v diagram of the fluid, where the shock adiabat and the
straight Rayleigh line can be drawn once the pre-shock state A is prescribed. Conditions
(3.5)–(3.6) can then be employed to obtain admissible post-shock states B. As demon-
strated by Kluwick (2001); Zamfirescu et al. (2008), if the Rayleigh line from a state
A to a state B is located completely above the shock adiabat pinned on A and passing
through B, then only admissible self-similar solutions are either compression shock waves
or isentropic expansion fans, according to relations (3.1)–(3.3) and conditions (3.5)–(3.6).

Jump A-B is therefore an admissible compression shock wave in the P -v diagram. On
the contrary, if the Rayleigh line from a state A to a state B is located completely below
the shock adiabat pinned on A and passing through B, then only rarefaction shock waves
or compression fans are possible. Also in this case all relations/conditions (3.1)–(3.3)
and (3.5)–(3.6) are satisfied, and jump A-B is then an admissible rarefaction shock wave.
Therefore, for an admissible shock wave one has[

d

dv
PRH(v;PA, vA)

]
B

6
PB − PA

vB − vA
6

[
d

dv
PRH(v;PA, vA)

]
A

. (3.7)

In particular, sonic pre- and post-shock cases are identified by the following conditions

PB − PA

vB − vA
=

[
d

dv
PRH(v;PA, vA)

]
A

Pre-shock sonic at point A,

PB − PA

vB − vA
=

[
d

dv
PRH(v;PA, vA)

]
B

Post-shock sonic at point B.

Moreover, for the solution of the Riemann problem to be unique, the Grüneisen coefficient
must be positive in the post-shock state, see Kluwick (2001). This is indeed always the
case in both the single- and the two-phase critical point region, since one has

G =

(
∂P

∂e

)
v

=
1

cv

dP sat

dT
> 0 (3.8)

where e is the specific internal energy, (dP sat/dT ) is the slope of the vapor-pressure
curve in the P -T thermodynamic plane, and cv is the specific heat capacity at constant
volume. The derivative dP sat/dT is positive for a pure fluid also in the vicinity of the
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G = 0 
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v 

Figure 4. Representative shock waves in the P -v plane from a pre-shock state A1 in the
negative-Γ VLE region. The continuous curve through A1, B1 and B2 is the shock adiabat centred
in A1, the continuous curve on the top is the VLE boundary (the symbol indicate the critical
point), straight lines connecting A1 to B1 and B2 are Rayleigh lines, he dashed line indicates
an isentrope passing through point A1 (sA1); it eventually intersects the Rankine-Hugoniot line
pinned on A1 at the state indicated by the triangle symbol. The line indicated by dash-dots is
the Γ = 0 line in the VLE region.

critical point (it is one of the few properties that does not diverge or go to zero) and
cv diverges to large, yet always positive, values. Therefore G approaches zero from the
positive side.

4. Expansion waves through the domain of negative-Γ values

Expansion waves featuring negative Γ are studied in the present section. For illustrative
purposes, a single isentropic line s = s̄ crossing the negative-Γ VLE region region is
considered. Along this isentrope, a number of exemplary candidate pre-shock states A
are selected and the admissibility of either rarefaction shock waves or composite waves
including a sonic shock is studied with the help of the geometrical arguments valid in a
P -v diagram as outlined in §3,

We start by commenting on figure 4, where the candidate pre-shock state A1, sA1
= s̄,

is located in the negative-Γ VLE region. Candidate post-shock states B, located along the
shock adiabat through A1, lie either in the negative-Γ VLE region (such as for example
state B1 in figure 4) or in the positive-Γ VLE region (state B2). Shock waves such as
jump A1-B1 satisfy the shock admissibility conditions (3.1)–(3.3) and (3.5)–(3.6), because
the Rayleigh line connecting these two states is located completely below the Rankine-
Hugoniot line centred on A1 and passing through B1. Moreover, rarefaction shock wave
A1-B1 exhibits a supersonic-to-subsonic speed transition. Another admissible shock wave,
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B3 

A2 

B4 
G = 0 

  

P 

v 

Figure 5. Illustration of the same type of rarefaction shock waves of figure 4. Here however, state
A2 is located near the bubble or the dew line such that the vapour mass fraction approaches
zero. Legend: as in figure 4. Furthermore, the dotted lines above and below the bubble line
illustrate the discontinuity in slope of the isentrope due to phase change.

arguably more interesting than the first example, is that denoted associated jump A1-B2.
Also in this case the shock wave is admissible because the Rayleigh line connecting A1

to B2 is located completely below the shock adiabat pinned on A1 and passing through
B2. However, for this particular shock wave, the Rayleigh line is tangent to the involved
shock adiabat at the post-shock state, B2, and consequently, this shock wave displays
a supersonic-to-sonic speed transition. All rarefaction waves connecting state A1 to any
post-shock state located between A1 and B2 along the shock adiabat through A1 are
admissible. No rarefaction shock is admissible for post-shock states past B2.

Next, in figure 5, the pre-shock state A2, sA1
= sA2

= s̄, is located in the VLE
region very close to either the bubble or the dew line. For states close to saturation, the
vapour mass fraction $ ↓ 0 or $ ↑ 1, with $ = 0 and $ = 1 constituting single-phase
thermodynamic states. Using the geometrical arguments in §3, rarefaction shock waves
A2-B3 and A2-B4 are admissible solutions of the shock admissibility conditions (3.1)–
(3.3) and (3.5)–(3.6), with the peculiar jump A2-B4 which displays a supersonic-to-sonic
speed transition. An additional finding is that the shock wave A2-B4 displays the greatest
pre-shock supersonic speed for all possible pre-shock state located along the isentrope
s = s̄, see §5 below.

With reference to figure 6, consider as a third case a pre-shock state A3 located on
the same isentrope of figures 4 and 5, i.e., sA1

= sA2
= sA3

= s̄. In principle, a pure
rarefaction shock wave from state A3 is impossible because a Rayleigh line drawn from
A3 can never be located completely below the shock adiabat centred on A3, see figure
6a. There is however an exception on said constraint, which is valid for single-phase fluid
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G = 0 

A3 

  

P 

v 

(a) Rarefaction shock waves from state A3

are, in principle, impossible because any
Rayleigh line drawn is not completely be-
low the shock adiabat centred on A3. Very
close to the critical point a special situation
occurs; this is discussed in Section 5.

 

 

 

 

 

 

 

 

 

 

 

P 

v 

B3 

A2 

B4 
G = 0 

A3 

(b) A possible composite expansive wave
would ensue given a high-pressure state cor-
responding to A3 and a low-pressure state
corresponding to, say, B4, namely an isen-
tropic expansion fan connecting states A3

and A2 immediately followed by jump A2-
B4.

Figure 6. State A3 is located in the single-phase critical region and sA1 = sA2 = sA3 (see
figures 4 and 5). Legend as in figure 4. Furthermore, the dotted lines above and below the dew
line illustrate the discontinuity in slope of the isentrope due to phase change.

states very close to the critical point; this particular case is discussed near the end of
the next section. On the contrary, from state A3, a composite wave fields is possible up
to states B3 or B4, see figure 6b. The first part of the composite wave field displays an
isentropic expansion fan connecting states A3 and A2, subsequently followed by a pressure
discontinuity starting from A2 (a shock adiabat therefore has to be drawn, pinned on
A2). Two of such permissible rarefaction shock waves after the expansion fan are A2-B3

and A2-B4, depending on the prescribed low-pressure value, as discussed above for figure
5. Note that in figure 6 the Rankine-Hugoniot line centred on A3 and depicted in figure
6a is different from that pinned on A2 (shown in figure figure 6b), however it is selected
such that sA2

= sA3
.

The shock Mach number of rarefaction shock waves originating from a given point
A along the isentrope s = s̄ crossing the negative-Γ region is now discussed. For a
given rarefaction shock wave, the shock Mach number is defined as MaS = uS/cA, with
uS denoting pre-shock fluid velocity in the shock reference. In a still fluid, uS is the
shock velocity in the laboratory reference frame. Note that the value of MaS depends
on the pre-shock thermodynamic state, for example on the pre-shock entropy sA and
specific volume vA, and the e.g. specific volume vB at the post-shock state B. Therefore,
MaS = MaS(vB; sA, vA). For each pre-shock point A along a given isentrope s = s̄, the
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Figure 7. Exemplary (pre-shock) Mach locus (solid black line) for methane, computed by
selecting several thermodynamic points within the region of negative non-linearity, on an a
selected isentrope si (red curve), chosen as pre-shock states, and subsequently using system
(3.1)–(3.3) and (3.5)–(3.6) to determine admissible rarefaction shock waves along this isentrope
associated with sonic post-shock speeds.

maximum shock Mach number is therefore computed as

M̂aS(s̄, vA) = max
vB∈V(s̄,vA)

MaS(vB; s̄, vA) (4.1)

where V(sA, vA) is the set of admissible specific volumes of post-shock states correspond-
ing to the pre-shock state A. In particular, along a given isentrope s = s̄, the maximum
shock Mach number is unity (acoustic wave limit) at the intersection of the isentrope
s = s̄ and the Γ = 0 curve and it increases as the saturation boundary is approached.
Figure 7 is obtained by computing and drawing the exemplary Mach locus of pre-shock
states of admissible rarefaction shock waves with post-shock sonic speeds, starting from
point S which is located on the Γ = 0 line and the selected isentrope sS = sT. The red
line on the P -v plane of figure 7 is a projection of this Mach locus and coincides with
the isentrope.

The following §5 moves from the above observation on the geometry of the shock
adiabat to derive: i) the region of admissibility of rarefaction shock waves for methane,
ethylene and carbon dioxide, and ii) the maximum attainable pre-shock Mach number
for sonic post-shock conditions.
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Figure 8. (a) The region bounded by the blue lines illustrates the thermodynamic domain in
methane in which pure rarefaction shock waves can exist. Pre-shock states are in the negative-Γ
region. Also shown is an example of a condensation shock wave A-B featuring supersonic-to-sonic
speed transition. State A is positioned near the dew line in the limit of $ ↑ 1, and state B is
located in the VLE region characterized by Γ > 0. The low-pressure bound, i.e., the curve
passing through points Q, B and R features post-shock sonic speeds for pre-shock states in close
proximity to the saturation lines (on the bubble-line side, $ ↓ 0, and on the dew-line side,
$ ↑ 1). The dash-dotted line through points T and S, respectively located on the bubble line
and the Γ = 0 line, represents an isentrope (here the choice is that s is to the left of sC). (b)
The pre-shock Mach number, MaA, associated with a post-shock Mach number of unity, as a
function of the pre-shock specific volume along selected isentropes (these are the black continuous
lines; a special projection of figure 7 from the right-hand side) traversing the thermodynamic
domain featuring Γ < 0. The MaA vs. vA lines of constant entropy start at the Γ = 0 and
terminate at very close proximity to the saturation lines. Rarefaction shock waves originating
at these states, i.e., in the limit that the $ approaches unity on the dew-line side and zero on
the bubble-line side, feature the largest value of the wave Mach number. In the graph above,
these states are connected with the red dashed lines. Additionally, for maximum Mach shocks
(red dashed line), the continuous red line represent the pressure jump across the wave, and the
blue dashed-dotted line illustrate the associated entropy increase across the wave. The fluid is
methane and thermodynamic properties are determined with the EoS of Kurumov et al. (1988).
Also jump conditions for the exemplified shock wave A-B are shown.

5. Admissibility region of rarefaction shock waves

In the present section, the admissibility region of pure, i.e., not composite, rarefaction
shock waves is now identified. The procedure to compute the admissibility region is now
detailed with the aid of figure 8 for methane fluid as follow:

(a) For the selected substance, draw on a P -v diagram the saturation and the Γ = 0
curves.

(b) Determine the values of the minimum and maximum entropy at points Q and R,
respectively. Points Q and R are located on the Γ = 0 line traversing the VLE region in
the limit of the vapor mass fraction $ approaching 0 and 1, respectively. All isentropes si,
sQ < si < sR display a finite domain of concavity in the two-phase near-critical region.

(c) Compute and draw thermodynamic P -v states along an isentrope si (start, for
example, at the left-most thermodynamic state indicated by tag Q).

(d) For the selected isentrope si, starting from the Γ = 0 line, note vA, and determine
and record the pre-shock Mach number MaA, associated with a post-shock Mach number
of unity (MaB = 1, see figure 7), using system (3.1)–(3.3) and exploiting the geometric ar-
guments to discern admissible shock waves from inadmissible solutions (these correspond
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to conditions (3.5)–(3.6)). Also, compute and record the post-shock states (PB, vB), the
pressure jump [P ] = PB − PA, and entropy jump [s] = sB − sA across the shock wave.
[P ] must be less than or at most equal to 0 (the zero value is valid for pre-shock points
Q and R), and [s] must be greater than or at least equal to zero (zero at Q and R).

(e) Along the same isentrope decrease then v by a small arbitrarily selected ∆v.
(f) For this new possible pre-shock state, note the new value for vA and determine the

pre-shock Mach number, MaA, associated with a post-shock Mach number of unity (MaB

= 1), by solving system (3.1)–(3.3) and (3.5)–(3.6). Also, compute the pressure jump [P ]
and entropy jump [s] as well as the post-shock thermodynamic states.

The Mach locus of figure 7 is illustrated in figure 8 for methane fluid on a MaA-vA

graph, together with other Mach loci along isentropes si, sQ < si < sR, computed using
the procedure d–f, for CH4; these Mach loci are indicated by black lines. Note that all
Mach loci originate at the Γ = 0 line and terminate at states approaching infinitesimally
the saturation lines. In figure 8b, the origins of the Mach loci are on the abscissa (see
the position of point S), whereas the end points are connected by the maximum Mach
curve: this curve connects states admitting rarefaction shock waves characterized by the
greatest supersonic-to-sonic speed transition, as well as by the greatest jump in pressure
for a given pre-shock state. The maximum Mach curve is the red dashed curve in figure
8b. The locus of pre-shock states follows the contour of the saturation lines between
points Q and R, whereby the post-shock states are located on curve Q-B-R, see figure
8a. Also, the results of calculations yield that sonic post-shock states associated with pre-
shock states that have been maximized, are located on a locus forming the low-pressure
bound of the domain of existence of pure rarefaction shock waves. Furthermore, the locus
of pre-shock states delimits the upper-pressure boundary of the domain of admissibility
of rarefaction shock waves. This locus of pre-shock states is located in close proximity
to the saturation lines in the limit of the vapour mass fraction approaching zero on
the bubble-line side, and one on the dew-line side. Only very close to the critical point
the admissibility domain extends slightly into the single-phase region; this not visible in
figure 8a. The latter is elucidated near the end of this section.

In the case of methane shown in figure 8 , the domain of validity of the scaled funda-
mental EoS encloses the region of negative non-linearity and the admissibility domain of
rarefaction shock waves. This however is not the case for carbon dioxide and ethylene.
It is therefore necessary to assess if extrapolation of the EoS yields qualitatively and
quantitatively satisfactory results for technical applications and analyses.

The following discusses to what extent the scaled EoS can be extended into the region
sufficiently far from the critical point where mean field theory works (meaning, classical
EoS’s can be used). That is to say, an assessment is made of quantifying what sufficiently
far means. For this purpose experimental data for ethylene (Nowak et al. 1996; Nehzat
et al. 1983) and carbon dioxide (Duschek et al. 1990), namely the isochoric heat capac-
ity, the thermodynamic speed of sound, the saturation pressure and the saturated vapor
density, are used. Here only the ethylene case is discussed in detail, as application of
the same procedure to carbon dioxide leads to similar results. Remark that the validity
domain of the EoS, as it is expressed by Sengers et al. (1976) is in terms of density and
temperature, viz. 279.00 K 6 T 6 300.05 K and 160.62 kg/m3 6 ρ 6 295.55 kg/m3,
respectively, is depicted in figure 2 by the region marked with the blue continuous lines.
This figure shows that the computed region of negative non-linearity, and consequently
the admissibility domain of rarefaction shock waves, are located partly outside the re-
ported validity domain; this situation is more pronounced on the vapor side of the VLE
region (on the vapor side Senger’s EoS is valid only down to 281.4 K). In hindsight,
since computations using the scaled fundamental EoS revealed that the lowest temper-
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Figure 9. Comparison of saturated properties of ethylene obtained with the scaled fundamental
EoS of Sengers et al. (1976) against experimental data from Nehzat et al. (1983) for the isochoric
heat capacity (a) and the thermodynamic speed of sound (b). The blue squares represent the
actual data points, whereas the red squares denote the percentage deviations of the computed
values with the EoS (dashed-dotted lines) with respect to the experimental values. The com-
parison shows that extrapolating properties using scaled equations slightly outside the stated
validity range such that the treatment of non-classical gasdynamic phenomena in the vicinity
of the vapor liquid critical point can be performed using one single thermodynamic model for
the fluid does not appreciably affect the results from a technical point of view.
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Figure 10. (a) Rarefaction shock wave admissibility domain of ethylene bounded by the blue
continuous lines. The shaded area within the admissibility domain is the portion that falls
outside the provided validity range of the scaled fundamental EoS used to compute the fluid
properties. However, the outcome of an extensive validation with experimental data, justifies its
use also for states lying in the shaded area as it ensures that the computed results are at least
qualitatively correct. (b) Maximum Mach locus for ethylene. Refer to figure 8 for more details.

ature of the computed admissibility domain of rarefaction shock waves corresponds to
a temperature of 279.6 K, it became necessary to evaluate the effects of extrapolating
primary and secondary property values obtained with the scaling laws along the dew line
starting from TC down to 279 K (the isochoric heat capacity and thermodynamic sound
speed were only assessed down to 280.15 K, since a data survey conducted by the authors
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Figure 11. (a) Rarefaction shock wave admissibility domain of carbon dioxide bounded by the
blue continuous lines. The shaded area within the admissibility domain is the portion that falls
outside the provided validity range of the scaled fundamental EoS used to compute the fluid
properties. However, the outcome of an extensive validation with experimental data, justifies its
use also for states lying in the shaded area as it ensures that the computed results are at least
qualitatively correct. (b) Maximum Mach locus for carbon dioxide. Refer to figure 8 for more
details.

did not yield data at lower temperatures where scaling behavior is still applicable). The
conclusion of the assessment is that extrapolation predicts saturated densities, satura-
tion pressures, isochoric heat capacities and thermodynamic sound speeds within 0.15%,
0.019%, 6% and 7% with respect to experimental data, respectively. It is noteworthy
that, although the deviations of the calculated values with respect to experimental data
are greater than the reported experimental uncertainties for quite a few data points,
the values obtained from extrapolation are acceptable from the viewpoint of technical
calculations. This statement can also be made by inspecting the observed trends showing
monotonic changes in properties in the region of interest for extrapolation, as is expected
and as is evident from figures 9a and 9b. It may thus be stated with certainty that ex-
trapolation down to 279 K is justified within the context and the the objectives of this
work. The computed admissibility domains for rarefaction shock waves in ethylene and
carbon dioxide, see figures 10 and 11, are thus at least qualitatively correct, as can also
be argued based on the principle/law of corresponding states.

In the very close proximity of the critical point, the slope of isentropic curves in the
P -v plane becomes very small, due to the low values of the speed of sound in the near-
critical region. Exactly at the critical point, the compressibility diverges and the critical
isentrope exhibits an horizontal tangent. As a consequence, in a limited region in the very
close proximity of the critical point, the single-phase speed of sound is lower than the
speed of a finite-amplitude RSW in the two-phase region and therefore the admissibility
region extends into the single-phase region. Since the slope of the isentropes decreases
for fluid states located further away from the critical point in the single-phase region,
double-sonic shocks are admissible for fluid states connecting the single-phase boundary
of the admissibility region and its lower, two-phase boundary. The computed single-
phase portion of the admissibility region is shown in figure 12, for methane, ethylene and
carbon dioxide fluid. It is remarkable that for the three considered fluids, the single-phase
admissibility region encompasses a very small range of pressure, which is in the order of
millionths of the value of the critical pressure.
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Figure 12. Admissibility domain in the very close proximity of the critical point of methane
(a), ethylene (b) and carbon dioxide (c). From the blue line in the single-phase supercritical
region double sonic shocks are admissible.

Note that the results presented here are valid under the assumption of thermodynamic
equilibrium, which is acceptable since the shock waves considered are relatively thick
and consequently the relaxation to thermal equilibrium takes place within the shock
wave structure itself. For a particular shock wave in the critical region of methane the
fluctuation spatial- and time-scale ξ and τ have been estimated for the initial and the
final states, respectively. For the post-shock final state, τ ≈ 6×10−10 s. During this time,
sound travels approximately 1.6 × 10−7 m. Therefore, the initial and final equilibrium
states must be separated by a disturbed region at least that wide. For comparison,
Borisov et al. (1983) computed a shock thickness of the order of cms for near-critical
shock waves. The relatively large thickness is a consequence of the bulk viscosity being
very large near the vapour-liquid critical point. The rarefaction shock wave in near-
critical conditions may be influenced by critical point fluctuations. However, the pre-
and post-shock states considered in the present work are located far enough from the
critical point for fluctuations to be negligible.

6. Discussion and concluding remarks

The thermodynamic domain located near the vapour-liquid critical point of common
fluids in which rarefaction shock waves can exists has been identified. For this purpose,
a scaled fundamental EoS has been used, since it allows for the correct evaluation of
the fluid thermodynamics in the domain of interest. For the considered exemplary fluids,
namely methane, ethylene and carbon dioxide, the results indicate that pressure jumps
as large as 6 bar with pre-shock Mach numbers between 1.5 and 2.0 are experimentally
achievable.

An experiment to demonstrate the computed phenomenon appears to be feasible;
however, provisions must be taken to limit gravity-induced density gradients from de-
homogenizing the initial states. Even though the calculations are only conducted for three
exemplary fluids, the predictions of these non-classical gas-dynamic phenomena are uni-
versal: due to criticality the details of the system become irrelevant, and this behaviour
must hold for all 3-dimensional Ising-like systems. This is a major difference with the
theory applicable to so-called BZT fluids, for which the possibility of non-classical phe-
nomena depends on the molecular complexity of the substance being sufficiently large,
and the thermal stability of the molecules sufficiently high, such that the molecules exist
at the temperature at which these phenomena are predicted.

However, few caveats associated with the presented results are in order. Firstly, the



18 Nawin R. Nannan, Corrado Sirianni, Alberto Guardone, Piero Colonna

models employed herein for methane, ethylene and carbon dioxide use critical exponents
very close to the theoretical values. Therefore, it can be argued that the obtained results
are generally valid in the near-critical vapour-liquid equilibrium region of any substance
conforming to a so-called 3-dimensional Ising-like system. Secondly, the situation here is
that close to the critical point, the influence of surface tension on pressure reduces, be-
cause surface tension itself goes to low values and is zero at the critical point. Thirdly, the
computed rarefaction shock waves shall be dispersed due to phase transition; notwith-
standing, the computed values of the pre- and post-shock states hold, under the condition
that the predicted states are sufficiently far from the transition front.
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