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ABSTRACT

RDF databases naturally map to a graph representation
and employ languages, such as SPARQL, that implements
queries as graph pattern matching routines. Graph methods
exhibit an irregular behavior: they present unpredictable,
fine-grained data accesses, and are synchronization inten-
sive. Graph data structures expose large amounts of dy-
namic parallelism, but are difficult to partition without gen-
erating load unbalance. In this paper, we present a novel ar-
chitecture to improve the synthesis of graph methods. Our
design addresses the issues of these algorithms with two com-
ponents: a Dynamic Task Scheduler (DTS), which reduces
load unbalance and maximize resource utilization, and a Hi-
erarchical Memory Interface controller (HMI), which pro-
vides support for concurrent memory operations on multi-
ported/multi-banked shared memories. We evaluate our ap-
proach by generating the accelerators for a set of SPARQL
queries from the Lehigh University Benchmark (LUBM). We
first analyze the load unbalance of these queries, showing
that execution time among tasks can differ even of order
of magnitudes. We then synthesize the queries and com-
pare the performance of the resulting accelerators against
the current state of the art. Experimental results show that
our solution provides a speedup over the serial implementa-
tion close to the theoretical maximum and a speedup up to
3.45 over a baseline parallel implementation. We conclude
our study by exploring the design space to achieve maximum
memory channels utilization. The best design used at least
three of the four memory channels for more than 90% of the
execution time.

CCS Concepts

•Hardware→Operations scheduling; •Computer sys-

tems organization → Reconfigurable computing;
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1. INTRODUCTION
Graph databases are one of the most prominent exam-

ples of large-scale Data Analytics applications. The Re-
source Description Framework (RDF) data model[14], rec-
ommended by the W3C, has experienced a significant up-
take for organizing data coming from data providers of a
variety of areas, including finance, government, health care,
transportation, communication and social networks, cyber-
security, and, of course, the World Wide Web (in form of the
Semantic Web). RDF organizes data as statements about re-
sources in the form of subject-predicate-object expressions,
known as triples. RDF triples naturally maps to labeled, di-
rected graphs. SPARQL is the predominant query language
for RDF datasets. It basically expresses queries as a com-
bination of graph methods (graph walks and graph pattern
matching operations) and analytic functions.

Graph methods are said to be irregular [18], because they
usually employ pointer-based data structures that determine
fine-grained and unpredictable data accesses with poor spa-
tial and temporal locality. They are inherently parallel,
because the algorithms can spawn concurrent activities for
many data elements (e.g., for each vertex, or for each edge),
and they are synchronization intensive, because concurrent
activities can access the same elements at the same time
and, thus, require coordination. The parallelism is also dy-
namic, because activities can start or finish at any point
of the computation as they explore new data elements. The
computation is mostly composed of data accesses, so increas-
ing memory parallelism for fine-grained memory operations
is key in providing higher performance. However, for ap-
plications like graph databases, the data sets are extremely
large, and the irregularity makes the data structures difficult
to partition across distributed memories without generating
load unbalance.

Commodity general purpose processors employ complex
cache hierarchies to extract as much performance as possi-
ble by exploiting locality, while emerging accelerators such
as Graphic Processing Units focus at providing high arith-
metic performance and high memory bandwidths for aligned
data accesses. For these reasons, graph methods do not ex-
ploit these architectures at their best, requiring a careful
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and often long optimization process. Reconfigurable de-
vices such as Field Programmable Gate Arrays (FPGAs)
thus provide an opportunity to design more efficient custom
accelerators for these workloads[9, 10]. However, this may
simply redirect the development efforts from optimizing the
code in high-level language to describing complex architec-
tures in hardware description languages. High-Level Syn-
thesis (HLS) approaches provide a way to quickly generate
hardware descriptions from high-level languages, but current
HLS tools are effective in generating serial or parallel accel-
erators for regular, easily partitionable, arithmetic-intensive
workloads typical of digital signal processing. They do not
generate efficient accelerators for irregular workloads. At the
same time, research started looking for solutions to acceler-
ate big data applications, data analytics and databases on
reconfigurable devices. Some approaches even consider not
only the acceleration of database operators, but also the syn-
thesis of queries, in particular for streaming datasets, with
the objective to quickly find the same patterns in dynami-
cally changing data. Additionally, recent works have looked
into architectures for graph and irregular algorithms[1, 4,
17].

In this paper, we propose a novel architecture design for
the synthesis of custom accelerators for irregular workloads.
We consider a set of SPARQL queries from the Lehigh Uni-
versity Benchmark (LUBM), a realistic benchmark that aims
at evaluating the performance of Semantic Web repositories
in a standard and systematic way. We analyze their behav-
ior, identifying issues that make these applications difficult
to synthesize with conventional approaches for parallel ac-
celerators. We demonstrate, in particular, the challenges
connected with the large datasets and the memory paral-
lelism, and the load unbalance among concurrent activities
(i.e., concurrent tasks executing on the parallel accelerator
arrays). We then propose two new components that address
these issues: a Hierarchical Memory Interface (HMI) con-
troller, which enables using multi-banked and multi-ported
shared memories, and a Dynamic Task Scheduler (DTS),
which enables out-of-order task completion and maximizes
resource utilization in presence of unbalanced tasks. We syn-
thesize parallel accelerators for the LUBM queries exploiting
these two components. We demonstrate speed ups with re-
spect to conventional approaches for serial accelerators, and
with respect to synthesis techniques for parallel accelerators
that do not employ them. We then finally show how the
generated accelerators mainly are bandwidth bound, per-
forming a design space exploration and identifying the con-
figurations (in terms of number of parallel hardware kernels
and memory ports) that maximize bandwidth utilization. In
summary, the contributions of this paper are:

• the study of load unbalance and its effect on perfor-
mance for custom accelerators of prototypical irregular
algorithms such as graph database queries;

• the design of the HMI;

• the design of the DTS;

• their validation and evaluation in the context of the
synthesis of custom parallel accelerators.

The paper proceeds as follows. Section 2 motivates the
papers. Section 3 presents the design of the HMI and of the
DTS. Section 4 proposes the experimental evaluation, while

Section 5 compares our approach to other solutions. Finally,
Section 6 concludes the paper.

2. MOTIVATION
Graph methods, as employed in graph databases, and, in

general, irregular applications present unique behaviors that
complicate the design of workload-optimized accelerators.
These applications typically expose significant Task Level
Parallelism (TLP), but only limited Instruction Level Par-
allelism (ILP) . They are mainly bound by memory opera-
tions. Thus, accelerators for this class of applications should
mainly exploit coarse-grained parallelism and support paral-
lel memory architectures. However, these two features alone
do not guarantee optimal performance. In fact, the paral-
lelism in these applications is highly dynamic and the (po-
tentially concurrent) tasks often are unbalanced, because
they can have different durations, touch different quanti-
ties of data, or require mutual exclusion on the same data
elements. Additionally, it is often impossible to statically
estimate task latencies, because their behavior strictly de-
pends on the actual data they process. Thus, the execution
paradigms based on static scheduling typically employed in
HLS do not provide effective load balancing.

We highlight the impact of load unbalance by profiling a
representative case study. For this purpose, we have cho-
sen SPARQL queries Q1-Q7 [16] from the Lehigh University
Benchmark (LUBM) suite. LUBM consists of a university
domain ontology, customizable and reproducible synthetic
data, and a set of test queries [11]. We considered parallel C-
language implementations of these queries that model them
as graph pattern matching procedures executed on a graph
representation of the data, similarly to [4]. There exist RDF
databases infrastructures [5] that converts SPARQL queries
to graph methods in C/C++. For this type of databases,
accelerating whole queries rather than only some primitives
is not a limitation: usually, analysts have a pre-defined set
of queries that do not change much over time. Datasets,
instead, are periodically updated with varying frequencies
depending on the availability of new data and regulations
on data retention.

All the implementations basically consist of loop nests.
Each loop iterates over the neighbor list of a specific vertex
of the graph. In turn, each iteration of a loop matches an
edge of the query pattern on the graph data. Each iteration
potentially executes in parallel, and thus can be an indepen-
dent task. However, the latency of each task can widely vary.
For example, tasks can have different durations because of
different sizes of the neighbors lists to explore. In another
example, some loop iterations may find several complete or
partial matches and thus explore a wide portion of the solu-
tion tree, while others may find no matches and terminate
early. The behavior only depends on the input graph, and
thus there is no way to determine or infer it statically. Our
analysis profiles the execution latencies of the LUBM queries
on a graph consisting of 5,309,056 edges (LUBM-40).

Figure 1 reports the execution latency of each iteration
of the outer loop of each query, normalized to the shortest
one. Our experiments show that most queries are highly un-
balanced and that the execution time between subsequent
iterations can differ of several orders of magnitude. In par-
ticular, we see that Q1, Q3 and Q6 are the most unbalanced
queries, with iterations that last hundred times more than
others. Moreover, the execution time of each iteration is
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Figure 1: Analysis of the outer loop execution time of queries on LUBM-40. Data is normalized against the minimum.



#pragma parallel
for (int i = init ();

i != termination ();
i = nextValue ()) {

kernel(i, args );
}

Listing 1: Pseudo code of the target application template.

Figure 2: Schematic representation of the architecture tem-
plate using the dynamic task scheduler

data dependent and, consequently, unpredictable at design
time. For these reasons, executing multiple iterations in
parallel with common fork/join paradigms results in sub-
optimal performance: many available resources, associated
with the shorter iterations, will indeed stay unused until the
longer iterations complete, even though other new iterations
could start execution. Thus, the overall execution latency
is dominated by high-latency iterations/tasks, and concur-
rent execution provides very limited benefits. We address
these issues by proposing a new accelerator design that al-
lows issuing and executing tasks (in our case, different loop
iterations) as soon as computing resources become available,
i.e. as soon as other tasks complete.

3. METHODOLOGY
In our study, we structure graph methods and graph pat-

tern matching algorithms as loop nests. We can parallelize
them following the general template in Listing 1. Such a
template represents the loop bodies as function calls (ker-
nel). As usual in parallel programming, synchronization
among multiple concurrent kernels is achieved through atomic
memory operations. As discussed in Section 2, to effectively
accelerate these algorithms we need to jointly: 1. exploit
TLP; 2. mitigate the effects of load unbalance; 3. allow
concurrent access to the memory. We meet these require-
ments by introducing a novel accelerator design template
that adopts a dynamic execution paradigm.

3.1 Dynamic Task Scheduling
Like other solutions for TLP, our proposed architecture

exploits spatial parallelism, i.e., it replicates custom Pro-
cessing Units (PUs) that execute a single instance of a task.

However, in opposition to fork-join execution paradigms,
our approach neither issues tasks in blocks (with size equal
to the number of replicas), nor it statically binds a particu-
lar task to a particular PU. Instead, our design allows task
to execute as soon as any PU becomes available, thus re-
ducing the effects of load unbalance for irregular workloads.

Figure 2 shows a high-level schematic representation of the
proposed template. It includes three basic components: the
Kernel Pool, the Dynamic Task Scheduler (DTS) and, the
Termination Logic.

The Kernel Pool is the set of PUs implementing the repli-
cated hardware kernels. The DTS manages the parallel exe-
cution with the objective of maximizing resource utilization.
It integrates three components:

• a Task Queue that keeps track of tasks ready for exe-
cution by storing their input parameters, such as the
value of the induction variable;

• a Status Register that holds runtime information about
resource utilization (available/computing) of the PUs
in the Kernel Pool;

• a Task Dispatcher that dynamically assigns ready tasks
to available PUs.

The component implementing the function that contains the
parallel loop inserts a new task in the Task Queue every
clock cycle, until the queue is full or all the tasks have been
inserted. Then, it stalls waiting for additional space in the
queue or for the completion of the parallel phase. The size
of the Task Queue is configurable; in the current implemen-
tation, its size is not critical, because tasks are pushed and
popped at the same frequency. However, the Task Queue al-
lows decoupling the parallel architecture template from the
rest of the circuit, enabling its sharing among multiple com-
ponents. Whenever there are elements in the Task Queue,
the Task Dispatcher checks the Status Register to find avail-
able PUs. If there is a PU available, the Task Dispatcher
pops a task from the queue and starts its execution, updat-
ing the Status Register accordingly. Similarly, when a PU
completes a task, the PU itself updates the Status Register
to signal its availability to the Task Dispatcher. The Task
Dispatcher schedules one task per clock cycle on an available
PU. When multiple PUs are free at the same time, the Task
Dispatcher picks one according to a static priority. In our
experiments, we found that the best solution to implement
the Task Dispatcher is to use a static table. Each entry in
the table is a one-hot value that corresponds to a PU. The
table rows are in accordance to the static priority of the PUs
in the Kernel Pool. The Task Dispatcher addresses the table
using the value stored in the Status Register, and obtains
from it the next PU that is ready to start a new compu-
tation. In our implementation, the one hot will be at the
position of the first zero of the Status Register. The table is
automatically generated according to all the possible values
that can be contained in the Status Registers. We found that
this design provides higher frequency than a combinational
circuit implementing the same functionality, as in [3]. The
output of the decision table is then used to trigger the start
signal of the selected PU and to update the Status Register
accordingly. Starting a single computation every clock cycle
is not a limitation, because tasks usually have a long execu-
tion time. On the other hand, this assumption significantly
reduces the complexity of the circuit. We designed the PUs
to register their inputs at front edge of their start signal
so that the Task Dispatcher can broadcast task parameters
from the Task Queue to the all the PUs in the Kernel Pool
and trigger the start signal only of the selected PU. This
design decision increases the fan-out at the output of the
Task Dispatcher but avoids a potentially big mux tree. The



(a) (b)
Figure 3: Example Call Graph (a) and associated memory
interface structure (b). The framed nodes in the CG are
associated with functions that directly perform memory ac-
cesses.

Termination Logic checks the termination condition of the
parallel loop. It counts all the tasks spawned by the parallel
loop and the completed tasks. In our design, we consider a
task as spawned as soon as it has been pushed to the task
queue, even tough its execution has not started yet. When
the number of spawned task is equal to the number of com-
pleted tasks, the Termination Logic asserts a done signal,
denoting the conclusion of the parallel phase. A particular
feature of the proposed design is its modularity: every task
can, in turn, spawn other tasks with the same architectural
solution. While this dynamic execution paradigm consid-
ers different tasks as independent, tasks still share memory
resources. Thus, this paradigm requires arbitration mech-
anisms to manage concurrency and synchronization among
tasks.

3.2 Hierarchical Memory Interface Controller
The design of the Hierarchical Memory Interface controller

(HMI) is based upon the custom Memory Interface Con-
troller (MIC) described in [6]. The MIC:

• dynamically maps N unpredictable memory requests
onto M memory ports, computing the destination ad-
dresses at runtime. Memory requests correspond to all
the memory operations performed by the synthesized
hardware kernels (i.e., the synthesis tool generates the
appropriate signals and buses that connect the kernels
to the memory interface whenever data are required).
Kernels stall until the data operation terminates. A
hardware addressing unit dynamically resolves the ad-
dresses, as data are distributed on different banks ac-
cessed from the different memory ports. The hardware
unit distributes (”scrambles”) data across the banks,
following different policies with the objective of reduc-
ing contention with irregular data structures;

• manages concurrency: it collects memory requests, and
if their target addresses collide, it serialize them. A
dedicated arbiter manages each memory port. The ar-
biters only employ combinational logic that does not
introduce any delay penalty;

• implements atomic operations (e.g. atomic increment,
compare and swap) through dedicated hardware units.
From a behavioral perspective, while running, atomic
operations lock the associated memory port.

Table 1: LUBM-1: performance comparison of the imple-
mentation using the DTS+HMI against the serial and the
parallel controller implementations

Single Acc.
Parallel Dynamic Speedup

Controller Scheduler
Single Acc.

Parallel

# Cycles # Cycles # Cycles Controller

Q1 5,339,286 5,176,116 5,129,902 1.04 1.01
Q2 141,022 54,281 50,997 2.77 1.06
Q3 5,824,354 1,862,683 1,805,731 3.23 1.03
Q4 63,825 42,851 19,928 3.20 2.15
Q5 33,322 13,442 9,016 3.70 1.49
Q6 674,951 340,634 197,894 3.41 1.72
Q7 1,700,170 694,225 492,280 3.45 1.41

Table 2: LUBM-40: performance comparison of the imple-
mentation using the DTS+HMI against the serial and the
parallel controller implementations

Single Acc.
Parallel Dynamic Speedup

Controller Scheduler
Single Acc.

Parallel

# Cycles # Cycles # Cycles Controller

Q1 1,082,526,974 1,001,581,548 287,527,463 3.76 3.48
Q2 7,359,732 2,801,694 2,672,295 2.75 1.05
Q3 308,586,247 98,163,298 95,154,310 3.24 1.03
Q4 63,825 42,279 19,890 3.21 2.13
Q5 33,322 13,400 8,992 3.71 1.49
Q6 682,949 629,671 199,749 3.42 3.15
Q7 85,341,784 35,511,299 24,430,557 3.49 1.45

We have refined the design of the MIC, proposing a hierar-
chical implementation of the component. While the central-
ized MIC is a customizable component allocated at the top
level of the design hierarchy (i.e., the root of the call graph of
the application), the proposed HMI distributes the arbitra-
tion logic across the design hierarchy to preserve the design
modularity. By exploiting the HMI, every level of the design,
from root to leaves, presents the same structure. This basi-
cally improves modules re-usability, since every sub-module
can be used as top-level module as well. Figure 3 provides
a schematic view of the HMI. Every module in the design
hierarchy presents the same Memory Interface (MI), and
MIs are chained from leaves to top. The first element in
the chain (MI funE in Figure 3a) receives inputs from the
memory (e.g. data loaded), while the last element provides
inputs to the memory (e.g. memory addresses, data to be
written). For each level in the hierarchy there is an arbiter
per memory partition that avoids simultaneous execution of
operations targeting the same memory partition, providing
concurrency management. Each arbiter sends an execution
request token to the upper level arbiter (until the top is
reached) and forwards ack signals coming from the upper
level to the lower levels arbiters. Figure 3a shows an ex-
ample of Call Graph (CG): framed nodes denote functions
(funA, funB, funD, funE ), which directly access the shared
memory. Figure 3b shows the associated memory interfaces.
Function funC does not perform any memory access, but the
called functions (funD, funE ) do. For this reason, funC is
involved in the management of memory concurrency at the
caller level (funA). Another key difference of the HMI de-
sign is that the MIC also embeds the hardware components
that implements atomic memory operations. In our design
instead, atomic operations are supported through dedicated
signaling: when a kernel executes an atomic memory oper-
ations, it employs dedicated signals that request to lock the
associated memory partition.

4. EXPERIMENTAL EVALUATION
To evaluate the effectiveness of the proposed approach we
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Figure 4: Profiling of memory operations during query execution on LUBM-40.

have synthesized the queries with three different configura-
tions. The first configuration implements 4 hardware kernels
(T = 4) and the HMI with 4 memory channels (M = 4), to
be directly comparable to [4], which proposes an architec-
ture for query processing implementing a fork-join paradigm.
The two other configurations differ from the first one only in
the number of hardware kernels implemented (respectively,
T = 6 and T = 8), while the number of memory channels
of the HMI stays unchanged at 4. We have synthesized all
the designs with Vivado 2015.4, targeting a Xilinx Virtex-7
xc7vx690t. We set the target frequency for the synthesis
to 100 MHz and, for the performance analysis, simulate the
designs with Modelsim 10.4c. We report all the synthesis
results post-place and route.

Table 1 and Table 2 shows the performance comparison
among the serial implementations, the parallel implemen-
tations (T = 4,M = 4) with the Distributed Controller
(DC) architecture introduced in [4], and the proposed par-
allel implementation with the HMI and the DTS of the
queries, on the LUBM-1 (100,573 triples) and on the LUBM-
40 (5,309,056 triples) datasets, respectively. The two tables
report performance in terms of execution latency. Com-
paring the performance against the serial implementations,
the architectures employing the DTS and the HMI gener-
ally show a speed up close to the theoretical maximum (up
to 3.76). Moreover, the simulations highlight that the DTS
provides significant speed ups also against the DC paral-
lel accelerators (between 1.41 and 2.25 on LUBM-1, be-
tween 1.45 and 3.48 on LUBM-40), especially on queries
that present high load unbalance among tasks (queries Q1,
Q4, and Q6 as shown in Figure 4). This result confirms that
the adopted dynamic execution paradigm, in opposition to
fork-join approaches, effectively mitigates the effects of load
unbalance.

We have measured the utilization of the memory chan-
nels in our accelerators integrating both the HMI and the
DTS. We recorded how many memory channels are in use
in each clock cycle during the parallel phases of the queries.
Figure 4 reports the data collected as a percentage of the
execution time of the parallel sections. The plots show that
the configuration with T = 4,M = 4 is using at least 3
memory channels for more than 75% of the execution time
for all the queries except Q2.

The performance trends show two outliers: Q1 with the
LUBM-1 dataset and Q2. The profiling of Q1 on the LUBM-
1 datasets shows that a single task lasts for 87% of the whole
execution time, thus explaining the limited speed up (very
close to 1) of the parallel implementations with respect to
the serial one. At the opposite, Figure 1b shows that Q2

is not heavily unbalanced. However, in Figure 4a we see
that Q2 has the lowest utilization of the memory channels.
This may be caused by structural conflicts on the memory
resources: Figure 4 shows indeed that increasing the number
of parallel kernels in Q2 does not increase the utilization of
the memory channels.

Table 3 compares the area of the accelerators implemented
with the HMI and the DTS against the serial accelerators
and the accelerators implemented with the parallel controller
as in [4]. The table reports the number of Look Up Table
(LUTs) and Slices post place and route. For each design
point, we also report the maximum reachable frequency. The
implementations with the HMI and the DTS range from 1.72
up to 1.94 times the occupation of the serial implementa-
tions. However, they are 20% smaller on average than the
corresponding implementations with the parallel controller.
Considering that the speedup over the serial implementa-
tions is always greater than 2.5, the adoption of the DTS
results highly profitable in terms of the area/performance
ratio.

Table 4 shows area (LUTs and Slices), performance (exe-
cution latency in clock cycles), and maximum frequency of
accelerators implementing the HMI an the DTS respectively
with T = 6 and T = 8 kernels. We can see that, in acceler-
ators employing the DTS, the area scales linearly with the
number of kernels. The maximum frequency slightly drops,
but it meets the imposed timing constraint (100 MHz) for
all the designs. These two configurations provides higher
utilization of the memory channels, as shown in Figure 4b
and Figure 4c. Both the configurations use at least 75% of
the memory channels for 90% of the execution time. The
configuration with 8 kernels uses all the memory channels
for more than 80% of the execution time in four of the seven
queries. We also see that increasing the number of parallel
kernels from T = 6 to to T = 8 with a fixed number of
memory channels (4) provides diminishing returns in terms
of performance. In fact, the performance only increases from
1% and 6% for all the queries except Q1. Q1 even shows
a small performance drop, presumably because of memory
contention. We can infer that increasing the number of ker-
nels beyond 8 would not be worth the cost in area without
also increasing the number of memory channels.

5. RELATED WORK
Our proposed approach aims at accelerating irregular ap-

plications by jointly exploiting TLP and multi-ported/distri-
buted shared memories. By implementing dynamic schedul-
ing and out-of-order execution, our approach also addresses



Table 3: Comparison of Synthesis results of the DTS+HMI implementation against the serial and parallel controller imple-
mentation

Serial
Parallel Dynamic Area Overhead

Controller Scheduler Serial P. Controller

LUTs Slices Max. Freq. LUTs Slices Max. Freq. LUTs Slices Max. Freq. LUTs Slices LUTs Slices

Q1 5,600 1,802 130.34MHz 13,469 4,317 113.37MHz 10,844 3,503 113.60MHz 1.94 1.94 0.81 0.81
Q2 2,690 824 143.66MHz 5,280 1,607 130.11MHz 4,636 1,335 132.87MHz 1.72 1.62 0.88 0.83
Q3 5,525 1,775 121.27MHz 13,449 4,308 114.53MHz 10,664 3,467 116.92MHz 1.93 1.95 0.79 0.80
Q4 3,477 1,073 143.20MHz 7,806 2,399 122.97MHz 6,175 1,918 118.68MHz 1.78 1.79 0.79 0.80
Q5 2,785 848 133.92MHz 5,750 1,738 138.31MHz 5,330 1,578 114.51MHz 1.91 1.86 0.93 0.91
Q6 4,364 1,369 136.76MHz 10,600 3,426 113.26MHz 8,125 2,633 118.68MHz 1.86 1.92 0.77 0.77
Q7 6,194 1,943 131.98MHz 15,002 4,953 106.71MHz 11,344 3,747 113.23MHz 1.83 1.93 0.76 0.76

Table 4: Performance and Synthesis results of the DTS+HMI architecture with 6 and 8 kernels
T=6, CH=4 T=8, CH=4

LUTs Slices Latency Max. Freq LUTs Slices Latency Max. Freq

Q1 15,305 4,822 268,093,088 111.58MHz 20,286 6,469 268,491,462 104.08MHz

Q2 6,507 1,942 2,355,699 113.45MHz 8,429 2,381 2,268,763 112.47MHz

Q3 15,259 4,943 83,327,993 106.19MHz 20,078 6,486 79,649,000 102.67MHz

Q4 9,015 2,807 17,894 113.63MHz 11,830 3,580 17,428 112.23MHz

Q5 7,370 2,190 8,104 113.55MHz 9,241 2,788 8,022 110.02MHz

Q6 11,725 3,806 184,879 107.37MHz 15,467 5,074 173,616 103.58MHz

Q7 16,408 5,347 21,902,616 112.01MHz 21,770 7,079 21,300,052 106.00MHz

load unbalance with tasks of different latencies. Several so-
lutions that exploit TLP involve the automated synthesis
of custom parallel accelerators, but require the introduc-
tion of custom schedulers or processors to coordinate the
execution of tasks. The approach presented in [12] maps
tasks, identified by partitioning the input behavior, onto
custom Processing Units (PU) and manages their execution
through a top-level controller. [2] similarly manages task
execution through a Control Processor (CP), which repre-
sents the top layer of a Multi-Level Computing Architec-
ture (MLCA) [13]. The lower level of the design is a set of
PUs: they may be custom accelerators or soft-cores. The
CP has the main role of scheduling and mapping tasks onto
PUs, considering a top-level control program that consists
of task instructions. In [12] the authors also identify con-
currency on memory resources as a bottleneck for perfor-
mance, and propose the adoption of distributed memories.
The approach relies on the coordinated scheduling of the
individual partitions to avoid conflicts for parallel memory
accesses. However, it focuses on applications that present
nested loops with affine array indices, making the method-
ology not applicable in the presence of irregular access pat-
terns. [12] further investigates the adoption of an arbiter
for managing memory concurrency as an alternative to co-
ordinated scheduling. However, such arbiter implements a
handshaking protocol among the different partitions, and in-
troduces several clock cycles of delay. The LegUp framework
provides both a conventional HLS flow for the synthesis of
full-hardware accelerators, and a MLCA flow [7]. The lat-
ter allows the automatic generation of designs that couple
a MIPS processor with custom PUs. This approach enables
the concurrent execution of parallel kernels, identified from
OpenMP and pthreads specifications. The kernels may for-
ward access requests to the shared memory one at a time,
managed by a round robin arbiter. The support for spatial
parallelism (i.e., kernel modules duplication) makes the ap-
proach particularly profitable when targeting computation-
ally intensive specifications, but less convenient when syn-
thesizing memory-intensive applications, especially when in-
creasing the number of kernels. The reason is the contention
on the shared memory. Our approach mitigates the impact
of the memory bottleneck by allowing concurrent access to

distributed/multi-ported memories, supported through the
HMI controllers. In addition, compared with these hybrid
solutions, our approach generates custom accelerators able
to exploit TLP without the intervention of external control
units or soft-cores.

[15] discusses a HLS flow that translates OpenMP pro-
grams in synthesizable Handel-C or VHDL. However, such
a flow imposes severe restrictions on the input specifications:
for example, it does not support global variables. Moreover,
it does not consider ILP: each kernel executes serially, and
only performs one operation at a time. [8] discusses the use
of OpenMP for specifications in system-level design. The ap-
proach targets hardware/software system architectures, and
maps OpenMP threads either on software threads or on cus-
tom hardware components, synthesized with a conventional
HLS flow. In general, it assigns (mostly) data-intensive
threads to dedicated hardware modules, and control inten-
sive threads to software. The authors identify several limi-
tations that make the adoption of full-hardware approaches
less attractive:

• complexity and costs of pure hardware implementa-
tions require dropping several features such as dynamic
scheduling and nested parallelism;

• interactions among threads are managed through cen-
tralized mechanisms, leading to scalability issues when
increasing the number of threads;

• the support for external memory systems is limited.

Our proposed techniques overcome most of these limita-
tions. Our flow is able to exploit parallelism at every level
of the call graph. The design of the accelerators and of the
HMI allows concurrent management of independent kernels
through lightweight communicating components, greatly im-
proving scalability. Finally, the HMI allows accessing exter-
nal memories and exploiting the increased bandwidth pro-
vided by distributed and multi-ported memories.

In [17] Tan et al. describe a pipelined architecture tar-
geted at the HLS of irregular loop nests. Their approach
synthesizes a pipelined loop as a set of Loop Processing Units
(LPUs). Each iteration of the loop is dynamically assigned



to one of the available LPUs through a Distributor. All the
LUPs are then connected to a Collector that passes results to
the next stage of the pipelined loop. The authors introduce a
reorder buffer (ROB) to ensure that results are committed in
the same order as in the original loop. Our architecture also
implements a dynamic scheduling approach, but it mainly
targets TLP exploitation rather than loop pipelining. Our
design does not require a ROB to guarantee correctness,
and it achieve consistency of memory operations through
the synchronization primitives implemented by the HMI.

In [4], Castellana et. al present a complete HLS method-
ology for the synthesis of RDF queries. The approach pro-
posed in the paper employs an adaptive Distributed Con-
troller (DC) to implement (task) parallel accelerators. The
DC exploits token passing mechanisms to track dependen-
cies among operations and manage the concurrent execution
flows. However, the DC implements a fork/join strategy
that spawns tasks in groups. If tasks of the same group are
unbalanced (i.e., have different execution times), resources
become significantly underutilized. Our design overcomes
this limitation by employing the DTC to assign tasks to re-
sources as soon as they are available.

6. CONCLUSION
We presented an architectural template that improves the

HLS of parallel accelerators for irregular applications. Irreg-
ular applications are mostly memory bound, present unpre-
dictable, fine-grained data accesses, are synchronization in-
tensive, and usually employ very large datasets that are diffi-
cult to partition without generating load unbalance. In par-
ticular, we targeted RDF databases, which map to graphs,
and SPARQL queries, which perform graph walks and graph
pattern matching operations. We employed the Lehigh Uni-
versity Benchmark (LUBM) a typical benchmark for this
class of applications as case study. We have initially shown
that the queries present tasks with significantly different ex-
ecution times, potentially leading to resource underutiliza-
tion and load unbalancing. We then described two com-
ponents, the Dynamic Task Scheduler and the Hierarchi-
cal Memory Interface controller (HMI). These components
address some of the issues of irregular applications. The
DTS provides dynamic task scheduling, enabling better load
balancing of tasks across parallel hardware kernels. The
HMI provides memory parallelism by interfacing the ker-
nels to multi-ported shared memories. It also provides sup-
port for atomic memory operations. Parallel accelerators for
SPARQL queries generated with this architectural template
provide speed ups close to the theoretical maximum (i.e., the
number of parallel kernels implemented in the architecture)
with respect to serial accelerators, and speed ups from 1.41
to 3.48 with respect to parallel accelerators without load bal-
ancing. Accelerators employing the proposed architectural
template also have a smaller area footprint with respect to
the baseline parallel accelerators. We finally explore how
the proposed architectural template exploits the available
memory channels, generally reaching high utilization.
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