J Sign Process Syst
DOI 10.1007/s11265-015-0989-1

A DVFS Cycle Accurate Simulation Framework
with Asynchronous NoC Design for Power-Performance

Optimizations

Davide Zoni - Federico Terraneo - William Fornaciari

Received: 9 February 2014 / Revised: 7 February 2015 / Accepted: 25 February 2015

© Springer Science+Business Media New York 2015

Abstract Network-on-Chip (NoC) is a flexible and scal-
able solution to interconnect multi-cores, with a strong
influence on the performance of the whole chip. On-chip
network affects also the overall power consumption, thus
requiring accurate early-stage estimation and optimization
methodologies. In this scenario, the Dynamic Voltage Fre-
quency Scaling (DVFS) technique have been proposed both
for CPUs and NoCs. The promise is to be a flexible and scal-
able way to jointly optimize power-performance, addressing
both static and dynamic power sources. Being simula-
tion a de-facto prime solution to explore novel multi-core
architectures, a reliable full system analysis requires to inte-
grate in the toolchain accurate timing and power models
for the DVFS block and for the resynchronization logic
between different Voltage and Frequency Islands (VFIs). In
such a way, a more accurate validation of novel optimiza-
tion methodologies which exploit such actuator is possible,
since both architectural and actuator overheads are con-
sidered at the same time. This work proposes a complete
cycle accurate framework for multi-core design support-
ing Global Asynchronous Local Synchronous (GALS) NoC
design and DVFS actuators for the NoC. Furthermore,
static and dynamic frequency assignment is possible with
or without the use of the voltage regulator. The proposed
framework sits on accurate analytical timing model and
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SPICE-based power measures, providing accurate estimates
of both timing and power overheads of the power control
mechanisms.
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1 Introduction

In this decade multi-core processors emerged as the solution
to deliver increasing processing power to demanding appli-
cations, ranging from the embedded to the supercomput-
ing market. This scenario highlights the Networks-on-Chip
(NoCs) as a viable communication infrastructure to face
scalability, flexibility and reliability issues. However suit-
able power-performance optimization methodologies are
required, since the NoC power consumption is not negligi-
ble and its behavior directly impacts the whole multi-core
performance.

In the perspective to tradeoff power-performance,
Dynamic Voltage and Frequency Scaling (DVFS) has been
widely used in processor designs to change both voltage and
frequency at run-time, depending on the actual processor’s
load. Multi-core evolution drives the research in decompos-
ing the chip in different Voltage and Frequency Island (VFI),
to aggressively exploit the DVFS mechanism. However,
synchronization between different VFIs must be carefully
evaluated to prevent negative side-effects on the system per-
formance. Today, these techniques are primarily referred as
Globally Asynchronous Locally Synchronous (GALS) [1,
2], to capture the idea of a set of synchronous components
communicating to each others by means of resynchroniza-
tion circuits, since the clocks of the components can be
totally uncorrelated.
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Traditionally, DVFS schemes coupled with GALS design
paradigm were mainly used in processors, while several
recent proposals focus on DVFS and GALS design to
optimize the NoC [3].

The evaluation of such complex multi-cores composed
by processors, cache hierarchy and interconnect is usually
carried out exploiting cycle accurate simulation frame-
works. Though they allow a relatively fast exploration of
the design space with respect to hardware prototyping, the
obtained results greatly depend on the accuracy of the
modeled components. In particular, the impact of accurate
models for the DVFS actuators and resynchronization cir-
cuits widely influences the simulation results, and this is
the rationale of this paper demonstrating how it is crucial
using such models. However, to the best of our knowl-
edge, the state of the art lacks of simulation frameworks
which enable accurate DVFS and GALS implementation
integrated (in a seamless way) within the architectural sim-
ulator. Conversely, the works in literature usually focus on
specific methodologies where the DVFS and resynchroniz-
ers are intended as a functional part of the system, without
accounting for their power and performance overheads.

This paper presents a multi-core simulation framework
that sits on publicly available research tools. It enhances the
NoC model with the support for accurate DVFS and GALS
timing and power models to provide both system reachabil-
ity and controllability. Thus, both power and performance
metrics can be monitored at run-time and reaction strategies
exploiting the DVFS actuator can be designed and assessed
within the framework.

1.1 Network-on-Chip Background

This section briefly overviews the considered NoC archi-
tecture. In particular, NoC is an interconnection subsystem
composed of links and routers delivering CPU and mem-
ory requests and responses, from source to destination. This
work considers a wormhole NoC architecture with Virtual
Channels (VCs) [13] where each request or response from
the CPUs and memory blocks is decomposed in packets
to be transmitted through the NoC. Moreover, the simula-
tion flow exploits a 4-stage router pipeline [13]. A packet
is considered split in multiple atomic transmission units
called flits. The first flit of each packet is the header flit.
A body flit represents an intermediate flit of the original
packet while the tail flit is unique for each packet and rep-
resents the final flit of the packet itself. When a flit enters
in the baseline router from one of the input ports, if it is an
header flit it has to pass through four pipeline stages plus
traversing a network link. First, it is stored in the virtual
channel (VC) buffer that has been reserved by the upstream
router through a buffer write stage (BW). Route Computa-
tion (RC) stage is performed in the same clock cycle only
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if the flit is an header one which determines the output port
for this new packet. The virtual channel allocation (VA)
represents the next pipeline stage that reserves to the new
packet an available virtual channel in the downstream router
from the selected output port. If the VC allocation is suc-
cessful, the flit competes for a crossbar switch path to its
output port during the switch allocation (SA) stage. Finally,
if the flit wins the switch allocation, the following steps are
switch traversal (ST) and link traversal (LT), that account
for the delay to traverse the upstream router crossbar and
upstream-downstream router links, respectively. Tail and
body flits require to traverse fewer pipeline stages since they
exploit some resources and information already reserved to
the packet by the header flit (i.e., VC and RC). The NoC
supports bidirectional communication between each pair of
routers via two links for each communication directions: a
network link, from source to destination, allowing packet
transmission and a destination to source control link, to send
back control flow information.

1.2 Novel Contribution

Starting from publicly available research tools the paper
presents a multi-core simulation framework which supports
accurate DVFS and GALS mechanisms for the NoC. The
framework is available in [14]. The first steps of this work
have been published in [15]. The novel contributions of this
paper, described in Section 3.2, Section 3.4 and Section 4.2,
are briefly summarized thereafter:

® Complete, Flexible and extensible framework - the
proposed framework supports the exploration of dif-
ferent multi-core design metrics, providing accurate
models for the actuators. Different simulation frame-
works appeared in literature and Table 1 highlights their
limitations as well as the new features added in this
work.

e  DVFS models and GALS support - the DVFS model
sits on an accurate SPICE level PLL (Phase Locked
Loop). Moreover, a delay model for voltage regulator
is built starting from SPICE simulations of a commer-
cial component [16]. The final DVFS accurately models
timing aspects as well as worst power consumption.
The GALS support implements two resynchronization
schemes, handshake [17] and FIFO [18], allowing trad-
ing area and power consumption over performance
penalties. Both the handshake and the FIFO resyn-
chronizers allows to partition the design into multiple
VFlIs, even if the handshake one severely impacts the
system performance, as discussed in Section 3.5 and
Section 4.4. However, it is valuable to support multiple
VFIs where the design imposes restrictive constraints
on both area and power overheads. Even if a single VFI
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Table 1 State-of-the-art on multi-core simulators: features, advantages and drawbacks with focus on GALS and DFS support for NoC.

Framework Cycle-accurate NoC Power

GALS

DVFS/DFS PLL/divider

Objectives

CPU+NoC support support support projection exploration
Renau et al. v multi-core simulation,
(SESQ) [4] parallel applications
Soteriou et al. v v Network-on-Chip
(Polaris) [5] design-space exploration
Hsieh et al. v v microarchitecture, power
(SST) [6] and thermal
Lis et al. v v many-core processors,
(HORNET) [7] mainly NoC interconnect
Bartolini et al. v v v run-time control
[8] policies for multi-cores
Zoni et al. v v v power/perf, reliability/perf
(HANDS [9, 10]) for multi-cores
T.E. Carlson et al. v v v v distributed parallel
(Sniper [11]) simulator for multi-cores
Subodh Prabhu v v test different DVFS
(Ocin tsim[12]) schemes for NoC

v v v v v CPU+NoC, PLL/divider,

Our Proposal

DFS, GALS design

running at a lower frequency without any handshake
resynchronizer can provide the same overall system per-
formance, it does not allow to tune the power metric at
fine granularity.

®  Run-time policy assessment - a lightweight policy mod-
ule interface allows to write novel management poli-
cies, which exploit DVFS in the NoC routers at different
granularities, i.e. VFI of different sizes. By accessing to
run-time power and timing estimates for different router
logic blocks, the policy can actuate on frequency and
voltage of the controlled IP blocks at run-time.

1.3 Paper Structure

The rest of the paper is organized in four sections. Section 2
details the state-of-the-art on simulation frameworks sup-
porting DVES and asynchronous NoC. Section 3 presents
the framework focusing on different design aspects, i.e.
PLL design, resynchronization scheme as well as the policy
evaluation module. Results are then reported and discussed
in Section 4 highlighting the flexibility of the proposed
simulation flow. Finally, some conclusions are drawn in
Section 5.

2 Related Works

Considering current and future multi-cores, power con-
sumption issues represent an hot research topic, that is

frequently faced in the form of the optimal power-
performance trade-off design. Even if several works address
power-performance balancing, most of them rely on low
level actuators, i.e. power gating and dynamic frequency
scaling (DFS), that are already available on the architecture
employed for tests. However, the introduction of such hard-
ware actuators requires accurate pre-silicon analysis, thus
there’s a need for accurate simulation frameworks allow-
ing to explore the design space for such actuators. In this
perspective this section is divided in two parts. First, it is
presented an overview of the state-of-the-art related to sim-
ulation frameworks supporting DFS and GALS network-
on-chip. Then, a few proposals exploiting DFS and GALS
design will be described to underline the crucial importance
of such technologies and the need for accurate simulation
frameworks.

Several proposals can be found in the literature to aid
designers during early stages of platform definition. Only
few of them are specifically focused to support power-
performance trade-off analysis in multi-core scenarios con-
sidering GALS NoC or DFS support for NoC routers.
Wattch [19] constitutes the first cycle-accurate single-
core power-performance simulator. However, the advent of
multi-core architectures required simulation tool-chains that
allow to accurately mimic the behavior of multi-core sys-
tems also considering asynchronous components and DFS
support. In this perspective, the SESC simulator [4] pro-
vides cycle-accurate simulation of bus-based multi-core
processors based on the MIPS architecture. However, it
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does not support Network-on-Chip architectures and does
not support for DFS nor asynchronous NoC design. The
Polaris framework [5] allows power and area design space
exploration for Network-on-Chip architectures without con-
sidering a detailed power estimation for both processors
and memory hierarchy. Moreover, it does not implement
an heterogeneous NoC model to allow for dynamic fre-
quency changes during simulation. [7] is meant to simulate
large-scale architectures, and exploits parallel simulation on
physical hardware with particular emphasis on the on-chip
network. While the framework enables the possibility for
power-performance trade-off analysis, it lacks of a com-
plete asynchronous on-chip network model, thus it is not
possible to explore different GALS configuration for the
interconnect as well as the simulation considering dynamic
frequency scaling based on high level policies. The work
in [11] presents Sniper, a framework which can simulate
multi-cores underpinned by an on-chip network intercon-
nect supporting per core DVFS. However such support is
not present for the NoC.

Table 1 reports a summary of the main characteristics of
the aforementioned analysis frameworks compared to our
proposal.

Coming to a brief literature review regarding asyn-
chronous NoCs and DFS, [1] proposes a design methodol-
ogy for partitioning a NoC architecture into multiple voltage
and frequency islands (VFIs) and to assign supply and
threshold voltage to each VFI. The employed resynchro-
nization scheme is based on FIFO buffers.

The work in [20] presented a complete DVFS scheme for
IP unit integration to be employed for NoC-based design.
However, this work does not easily allow to model different
policies or different topologies as in a cycle accurate sim-
ulation framework, since it has mainly a prototyping focus.

Cycle-accurate simulation NoC + Cores

/ Frequency
[ Istand0

RO R1 R2 --E--— R3
R4 RS R6 —-E-—

Frequency | | |

Island 3

R8 R9 —E-- R10 RI11

RI2 RI3 —-E- R14 4—( RIS )

Frequency

In contrast, our proposal is intended for early stage design
space exploration within an accurate simulator capable to
simulate also a Linux based OS.

3 Proposed Estimation Flow

The capability of the proposed framework to simulate dif-
ferent multi-cores is expressed by Fig. 1. The left part
reports a tiled 2D-mesh multi-core where the NoC is parti-
tioned in multiple (five) VFIs, each of them with a different
shape to put in evidence the flexibility of our proposal. The
interconnection between each VFI pair is regulated by a
resynchronizer module that is detailed in Section 3.5, i.e.
the blue box in Fig. 1. Moreover, each router has one L2
bank connected at least one core, even if multiple cores per
router are possible. It is worth noticing that both L2 and
the cores are not considered part of the VFI on any router,
thus a resynchronizer is used to manage their connection to
the NoC. Last, the green box on the top right side of Fig. 1
highlights the policy, that is the baseline component used
to manage voltage and frequency depending on the actual
power and performance levels.

From the implementation viewpoint, the proposed simu-
lation flow sits on a set of publicly available tools that are
used as basic building blocks. GEMS5 [21] is the exploited
event-driven simulator for multi-core architectures with
NoC-based communication [22]. Orion2.0 is used as the
power model for the NoC, while additional components
has been added to support the accurate GALS and DVFS
models. Figure 2 reports the information flow between the
various simulation framework components to implement
DVFES, split in two parts: run-time (top box) and design-time
(bottom box).

Policy evaluation

/ ! Loggers \_POWU‘/ perf

\ (on a per island basis) / slat]sucs
\—/

( Pohcv
> DVFS
C

/~ Actuators
‘«— (one for each
\ . . ommands
Frequency “frequency island).
o T i e e T e e s
/ Detailed view of additional logic \
| attached to a router |
Frequency | o *’/"’/‘P/-_ i I
Tsland 4 b . CPUIS |
/w/"/f |/ I 11 Cache |
,/l<j | L ris ——] :
\
l \’\ Resync L2 Cache / |
\ l
> 8 /

Figure 1 Logical view of the proposed simulation toolchain.
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Figure 2 Information flow
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Starting from the Predictive Technology Models
(PTM) [23] (bottom-right corner in Fig. 2), that are SPICE
level transistor models, a 45nm PLL SPICE has been
developed and evaluated to extract worst case power fig-
ures and timing data. The power information are added to
Orion2.0, while the timing data have been used to develop a
MATLAB-based PLL model, which has been implemented
in GEMS. Last, the simulation is driven by both architec-
tural events as well as the events generated by the policy
module that directly interact with GEMS.

Note that the event management system of the simulator
has been extended to support the possibility to move already
scheduled events between different simulation times. This
aspect is mandatory to the DFS behavior. In particular,
we needed a framework capable to group all the events
scheduled for a single component, and to move them for-
ward or backward with respect to the actual scheduled
time. Changing the frequency of a component entails mov-
ing already scheduled events to the time they will need
to be processed considering the frequency change, and
storing the new frequency value, so that subsequently gen-
erated events will be scheduled at the appropriate time.
It is worth noticing that both the VFI partitions as well
as the resynchronizers are not directly observable in the
information flow, since they are integrated in GEMS with-
out exchanging information with the rest of the simulation
framework.

The rest of this section is organized in four parts detailing
the most important introduced components. In particular,
Section 3.1 reports the baseline PLL model and its imple-
mentation, while Section 3.2 deals with advanced PLL

!

PLL model extraction
at design time

2-poles transfer
function +

MATLAB PLL worst case power
L || transfer function . T Raw

+ Voltage Regulator

Delay Function daia
SPICE -
simulation
PTM
model

modelling issues. Furthermore, Section 3.3 addresses the
SPICE-level PLL implementation aspects. A delay model
for the voltage regulator is discussed in Section 3.4, which
is mandatory to take into account the need to rise up the
voltage before increasing the frequency. Finally, Section 3.5
presents the two resynchronizer models implemented in the
proposed simulation flow, i.e. FIFO and handshake.

3.1 Baseline DFS Module

The simulation framework supports two different DFS
implementations: one that employs a single PLL for the
whole chip and derives the clock for each frequency island
through frequency dividers, and another using a dedicated
PLL for each island.

In the first case, a frequency change is simulated as
an abrupt change from the previous to the new frequency.
Frequency change requests not aligned to a clock edge
boundary are properly delayed till the next clock edge to
avoid the insertion of clock glitches, as real world clock
switch implementations do.

Conversely, in a clocking scheme employing a PLL
for each frequency island, frequency changes are imple-
mented by changing the PLL set point. When simulating
this implementation, the PLL step response is modelled
using the two pole transfer function of Eq. 1 whose param-
eters are configurable to approximate the response of a
given PLL.

1

G = ————

ey
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A step change in the frequency set point is then simu-
lated by performing multiple individual frequency changes
to the frequency island controlled by the PLL to track the
two-pole step response. This is performed by computing the
step response of Eq. 1, which is Eq. 2. This equation gives
the step response of a frequency change given f,, the old
frequency, and f;,, the new desired one, and is sampled at
each clock edge to compute the next clock period.

FO = fot (um 1) (1 + Jll_iézefé‘“’sin (wr\/l g2 +awS(€)>>
@

This results in continuously changing the clock period
on a cycle-by-cycle basis until the step response reaches
its steady state, allowing an accurate simulation of the
frequency change during this transition phase.

As this process entails a large number of individual fre-
quency changes, it introduces an overhead in the simulation.
To allow the user to trade off simulation accuracy for speed,
a configuration option k has been introduced, to sample
the step response (and therefore cause a frequency change)
not every clock period, but every k clock periods, thereby
reducing the number of frequency changes.

Figure 3 shows the simulation of the PLL. model when
changing its frequency set point from 1 to 2GHz, where
individual frequency changes are marked with a dot. The left
plot shows the results with k = 1. The frequency transition
smoothly follows the two pole step response, but to achieve
this result 184 individual frequency changes are required.
The right plot shows the results with k = 16. In this case the
frequency change is approximated with only 12 frequency
changes.

3.2 Multi-step PLL Model

While the PLL model presented in Section 3.1 provides a
good approximation of real PLL dynamics, there are some
cases for which the simulated model is not accurate enough.
In particular, the closed form (2) is reasonable if the step

Frequency [GHz]
= = = N
> o ® o
Frequency [GHz]
= - N
o) =)

=
>

=
N
-
N

01.00e+00 4.0e-06 01.Ooe+00

Time [s]

8.0e-06 4.0e-06

Time [s]

8.0e-06

Figure 3 Simulation of a frequency change from 1 to 2GHz with two
PLL simulation granularities.
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input is applied when the system is in a steady state, i.e.
every previous transient response has completed. However,
considering a real multi-core, it is possible that the PLL con-
troller operates faster with respect to the PLL. module, thus
providing a new frequency when the PLL has not reached
the previous requested one. Figure 4 shows how the simu-
lated PLL can differ from the real PLL dynamics simulated
using MATLAB, when the required frequency changes are
too fast with respect to the PLL dynamics.

Starting from this issues a new implementation of the
PLL has been integrated in the proposed framework using
the Euler Direct Method [24] to approximate a dynamic
equation or a dynamic system of equations. It is worth notice
that the Euler Direct Method uses the first order approxima-
tion term of the Taylor series of the function to compute the
next approximate point, i.e. y(t + h) = y(t) + d];y) * h,
where & represents the integration step. In this perspective,
the state space representation of the PLL model is required
in spite of the transfer function (see Eq. 1) to exploit the
Euler Direct Method. The final PLL implementation, which
simulation results are shown in Fig. 5 provides much more
accurate results with respect to the baseline implementa-
tion, without any additional overhead, since the frequency
approximation is always required. Moreover, the implemen-
tation can still use k = 16 clock periods, thus keeping low
the number of frequency changes.

3.3 SPICE PLL Model

The PLL model proposed in Section 3.2 is a flexible tool
to evaluate the timing overhead and the feasibility of each
methodology which exploits the PLL as actuator. However,
its power consumption represents another critical metric to
be considered. This section presents a SPICE-based, 45nm,
1V PLL implementation exploiting the PTM models [23].
The PLL implementation is based on the work in [25],

12 X].O8

Frequency (Hz)

[Required frequency
—PLL wrong Behavior
/ i i i i PLL Correct Plot |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (us)

Figure 4 The single step PLL model against a fast frequency transi-
tion. The implemented PLL provides bad approximation results with
respect to the real model simulated using MATLAB when the fre-
quency set point changes before the previous transient response has
exhausted.
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Frequency (Hz)

3.5 4 4.5

Figure 5 The multi step PLL model against a fast frequency tran-
sition. The behavior remains close to the MATLAB simulated sys-
tem even when the frequency set point changes before the previous
transient response has exhausted. Thus, the PLL response plots are
overlapped.

which however provides results for a 350nm PLL imple-
mentation thus not considering actual sub-micron technol-
ogy aspects. While a complete analytical power model for
the PLL has not been developed yet, the SPICE implemen-
tation provides a coarse grained way to evaluate the PLL
power consumption which emerges to be less than 2mW
for a PLL which works in a 100MHz-1.5GHz frequency
range. Figure 6 details the generic PLL logic scheme com-
posed of three blocks. The phase detector (PD) compares
the reference signal (Q,.r) with the PLL output signal
(Qioop)- The Qjoop is also the output signal produced by
the PLL used as clock signal for the blocks of logic.
The PD produces a two signal output, which are used
to increase or decrease the voltage applied to the VCO
(Voltage Controlled Oscillator) block. Note that the fre-
quency depends on the applied voltage, thus to increase
or decrease the PLL output frequency a proper increase
or decrease of the applied voltage is required. The charge
pump block is in charge to increase or decrease the voltage
level applied as modifier to the ring-oscillator-based VCO
block.

Figure 6 The logic scheme for
a PLL model from [25].

|
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3.4 Dynamic Voltage Scaling

For what concerns the DVS scheme, the simulation frame-
work implements it as a slave of the DFS component, where
the voltage is set to the lowest possible value according
to the desired frequency, considering the necessary safety
margin. In particular four assumptions are hold. First, all
the voltage-frequency pairs are assumed to be in the linear
voltage-frequency region, where higher frequencies requires
higher voltages. Moreover, we considered a finite number
of possible voltage values. This means that, at each step,
the lower possible voltage value is selected to support the
actual required frequency. Third, the frequency increase
takes place when the required voltage is stable. For example,
when a lower frequency is required such a change happens
immediately, since the current voltage value can support
the new required frequency. On the other hand, the request
of an higher frequency could result in a delayed actua-
tion. For example, if the new required frequency requires
an higher voltage value, the voltage regulator is triggered
to increase the voltage and only when the new voltage is
stable the frequency change starts. It is worth to note that
in case of a frequency decrease the voltage value can be
decreased too, but this action happens in parallel with the
frequency reduction. However for each frequency modifi-
cation the voltage value is checked to guarantee that no
increase happens using an incorrect voltage value. Although
the simulation infrastructure is flexible enough to consider
different voltage regulator timing overheads, in Section 4
we consider a specific voltage regulator instance with real
timing overheads.

From the power viewpoint, we studied a commercial Lin-
ear Technology Power Management solution, namely the
LTC3589 [16], since the reported specifications matches
our requirements. The LTC3589 provides multiple switch-
ing voltage regulators and linear regulator addressing the
power management of a complete System-on-Chip (SoC)
solution. In particular, the switching regulators can provide
up to 1.6A with a power overhead up to 2.5mA. Results in

I‘cﬁ'arg'e Pump ('GP)'; I~~~ Ring Oscilltor (VCO) |
' S b
I i Q I I Q:‘”_‘ _{I Qs #H |
I out l Qo— — —Qo I
I loop ‘
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Section 4 report a single router power consumption always
lower than 150mA at 1V, thus the considered power man-
agement solution allows to safely group up to 8 routers in
a single frequency island. As already said, the considered
module represents an example of use of real data for a spe-
cific instance of voltage regulator. However, the structure of
our simulator is flexible enough to plug different power con-
sumption values for the voltage regulator depending on the
considered real component.

3.5 Resynchronization Scheme

Once different parts of the same digital system are working
at different clocks or at the same frequency but at differ-
ent phases, an interface is required to ensure reliable data
transfer as well as avoid metastability. This work focuses on
asynchronous NoCs only, thus a resynchronization scheme
between each router pair or a router and its connected
computational components, i.e. cores, memory controllers
and cache controllers, is required. Note that extending the
DVES capabilities to CPUs is straightforward, since the
DVES actuator model is the same and the resynchroniz-
ers are already in the between of each CPU-router pair.
It is worth noticing that the proposed resynchronization
scheme interface is conceived to be a customization point
of the simulator, and it is extensible to easily plug differ-
ent resynchronization schemes to verify their performance.
The rest of this section details the schemes that are currently
implemented.

Handshake Resynchronizer Starting from the work in
[17], the implemented 2-way handshaking protocol adds
two single bit lines only, i.e. request and acknowledge,
to a network link between two routers. The resynchro-
nization logic scheme is depicted in Fig. 7 with focus
on two clock domains, e.g. two routers. In particu-
lar the left part of the figure reports the output port
interface on the upstream router, while the right side

Figure 7 The implemented

FIFO Resynchronizer

Clock Domain 1

provides the input port interface of the downstream
router. When a new flit is ready to be sent out, the
upstream router triggers the new_flit signal for 1 clock
cycle. This forces to toggle the req signal 1 cycle
later. Moreover, the back path in the upstream router
switches the busy signal high. After the propagation
delay the req signal enters to a two flip-flop chain in
the downstream router, that is used to avoid metasta-
bility issues. The third flip-flip in the chain is used in
couple with the req_stable signal as an edge detector,
since our resynchronizer works on edges to increase
throughput [17]. The edge detector triggers the data_valid
line, signaling that there is a wvalid flit on the link.
The req_stable signal is also sent back as an acknowl-
edge to the upstream router to signal the data transfer
completion. Also the upstream router manages the ack
signal using a two flip-flip chain to avoid metastability
issues. The busy signal is used to prevent the transmis-
sion of new flits until the reception of the acknowledge
signal.

Starting from the work in [18],
the proposed framework implements the FIFO model to
resynchronize two routers as well as its connected com-
putational and memory components. The FIFO resyn-
chronizer allows to decouple the transmitter and receiver,
since the former can send data up to fully fill the FIFO
at its own frequency while the receiver can read data up
to the frequency of the sender. In particular, the FIFO has
two clocks, i.e. write and read, while the first is the same
clock signal of the sender and the second is the clock of
the receiver. In addition two signals, i.e. full/empty, move
from the FIFO to the sender and the receiver, respec-
tively. The deeper the FIFO the stronger the decoupling
capabilities. All in all, the presented FIFO introduces
only two delay cycles in the best scenarios, i.e. one to
send from the upstream router to the FIFO and one to read
from the FIFO, while [18] reported a 6 cycle penalty in
the worst case, i.e. some corner cases when the clocks of

Clock Domain 2

edge sensitive resynchronization
scheme.
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Table 2 Architectural parameters for the considered voltage regulator
and PLL. Note that the voltage decrease is assumed shadowed by the
PLL timing as detailed in Section 3.4.

0< f<250MHz 0.7V

250 < f <500MHz 0.8V

500 < f <750MHz 0.9V

750 < f <1GHz v

V- — V+ Sus (voltage increase delay)

PLL delay 2us (=4 - 105, £=0.6)

(See Eq. 1)

the two blocks are totally uncorrelated. Thus, the FIFO
resynchronization scheme provides better performance
than the handshake one, while a non negligible power
and area overhead is introduced mainly due to the FIFO
queues. It is worth noticing that our flow implements the
timing model of the FIFO resynchronizer, while it relies
on [18] for synthesis results, i.e. area and power.

4 Results

This section addresses the flexibility and scalability of the
proposed framework supporting exploration and optimiza-
tion of power and performance metrics for a NoC consid-
ering DVFES, DFS and GALS mechanisms. The section is
organized in five parts. Section 4.1 presents a simple yet
effective test to assess the correctness of the implemen-
tation. Section 4.2 considers the design space exploration
aspects related to power and performance metrics account-
ing both DFS and DVFS also analyzing different VFI sizes.
Section 4.3 presents a threshold-based DFS policy, thus
highlighting the possibility to dynamically change frequen-
cies by exploiting a simple frequency divider to enhance

the flexibility of the framework. Section 4.4 discusses the
performance overhead due to different resynchronization
schemes. Last, Section 4.5 reports timing overheads intro-
duced by the simulator to support DVFS and GALS for the
NoC(Table 2).

All the presented results are obtained using a 16 core
architecture using a 4x4 2D-mesh NoC. The details of the
microarchitectural configuration are reported in Table 3.
Moreover, Table 2 details the voltage regulator and the PLL
parameters used for the simulated scenarios of this section.

4.1 Implementation Correctness

The proposed framework implements an asynchronous NoC
model inside a cycle accurate simulator, also allowing to
implement DVFS. The implementation impacts the kernel
of the simulator, thus a proof of the correctness of this
enhancement should be provided, since the final semantics
cannot be guaranteed a priori.

To this extent we provide a proof of the validity of our
solution addressing the correctness of the expected behav-
ior of the simulation in two ways. First of all a black-box
test was performed by simulating the full architecture. The
code chosen to run on the cores is a subset of 9 tests
from the MiBench [27] suite. The tests were performed
with a simple policy that changes the frequency of the
NoC every 100ns, with the sole aim to stress the added
DFS and resynchronization functionality. No discrepancies
were found between the expected and obtained output.
This shows that the modifications to the GEMS simulator
did not introduce errors that affect code execution. Sec-
ond, we checked the timing accuracy of the introduced
components. To this purpose we considered multiple sim-
ulations starting from the same multi-core and using the
same benchmark set, but changing the frequency of the
NoC for each simulation. These tests were performed using

Table 3 Experimental setup: processor and router micro-architectures and technology parameters.

Processor core
Int-ALU
Int-Mult/Div
FP-Mult/Div

L1 cache

L2 cache

Memory Controllers
Coherence Prot.
Router

Routing
Topology
Technology

2GHz, out-of-order Alpha core

4 integer ALU functional units

4 integer multiply/divide functional units

4 floating-point multiply/divide functional units
64kB 2-way set assoc. split I/D, 2 cycles latency
512KB per bank, 8-way associative

4 placed in the corners of the 2D-mesh

MESI token (for real traffic) [22]

4-stage wormhole switched with 64b link width, 4vcs per vnet
Frequency variable from 500 MHz to 2GHz
Dimension Order Routing, XY.

4 x4 2D-mesh, based on Tilera iMesh network [26]
45nm at 1.0V
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Figure 8 Number of routed 65 45
flits as a function of router
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Frequency [GHz]

a synthetic traffic generator to be able to control the rate
of packets in the NoC. Figure 8 reports the number of
routed flits as a function of the router frequency, in two
different network load scenarios. The router frequencies
range from 500 MHz to 2GHz with a step of 20 MHz, i.e.
we have %?%’IHZ different simulations with fixed fre-
quency. The left part of Fig. 8 reports the simulations using
0.50 flit/port/cycle while the right part of the same figure
reports the same simulations using an injection rate of 0.07
flit/port/cycle. The first case shows how, with a sufficiently
high network load, the increase in frequency produces a
linear increase in the processed flits. This means that the
resynchronizers, as expected, do not affect the linearity of
the frequency/processed flits relation. Moreover, the second
case shows saturation at 1.5GHz. This is not a microarchi-
tectural saturation, but rather shows that the NoC does not
benefit from high frequencies when the injection rate is low.
The third test addresses the timing correctness of the DFS
implementation. We used the same 16-core architecture and
traffic load as in the second test, but the change in frequency
between simulations was emulated using a PWM-like (Pulse
Width Modulation) scheme alternating between only the
two boundary frequencies: SO0OMHz and 2GHz. For each
simulation we operate a fixed number of frequency changes
between the two frequencies considering all the routers as

Frequency [GHz]

a single frequency island. Each simulation is different from
the others in terms of duty-cycle, i.e. the percentage of the
simulation time spent in each one of the two frequencies.
During each of these simulations there were two frequency
changes (high-to-low and low-to-high) per 800ns, for a total
of 40000 frequency changes per simulation. In particular,
Fig. 9 reports the received packets as a function of the duty-
cycle. The range is from 2.5%, where most of the time of
the NoC is spent at S00MHz, up to 97.5%. The left and right
graphs of Fig. 9 are two set of simulations that differ in the
flit injection ratio exactly as in the previous test.

4.2 Design Space Exploration

The joint power-performance exploration represents a crit-
ical step in the evaluation of the NoC. This is mainly due
to the need to evaluate multiple interacting subsystems and
the impact of different actuators. Thus, this section explores
a simple policy for NoC power-performance optimization
that exploits both DFS and DVEFES actuators using the FIFO
resynchronizer model with 6 buffer slots. Moreover, two
scenarios are analyzed, i.e. one router and 4 routers (orga-
nized in a 2x2 topology) per VFI. The purpose of the policy
is to steer the description of the framework capabilities.
Each VFI is equipped with a DES/DVFS module and both

Figure 9 Number of routed 55 45
flits as a function of duty cycle
with two network load scenarios, 501 401
to demonstrate the ability of the © 451 ©
proposed framework to operate s S 351
frequency changes correctly. — 40 =
£ 351 2 301
g 30 E o5
g25 g
20- 20

-
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Figure 10 Execution time
considering 8 MiBench 1.05
applications on a 16 cores

architecture with a 4x4 2D-mesh
NoC. Results are normalized per 0.9
benchmark.

(53]

hello

the voltage regulator and the PLL parameters are defined
in Table 2: four voltage values are considered, Sus is the
voltage regulator transient time and the considered PLL for
both DVFS and DFS actuators has a 2us transient time.
Moreover, each VFI updates its frequency and eventually
the voltage according to the following policy:

Ji =kC 3

where f; is the VFI frequency and C, represents the num-
ber of flits that are stored in the input buffer of the router
at time 7. K is a constant fixed at 0.04 which represents
the actuation strength depending on the actual router load.
While different values are possible, the selected one repre-
sents a conservative choice obtained through experimental
exploration. A sample rate of C; at 10MHz is considered,
i.e. low actuation frequency.

Figure 10 and Fig. 11 report the execution time and the
power consumption of the NoC considering eight bench-
marks belonging to the MiBench [27] suite. Each bench-
mark is simulated in four different scenarios combining
DFS or DVFS with VFIs of different sizes, as reported in
Table 4.

Figure 10 highlights a comparable time for the execution
with DFS and DVFS. This is reasonable due to the small
transient time of the voltage regulator. Considering the 2x2
VFI scenarios, the DVFS solution can slightly overcome the
DFS due to the side effect of averaging the buffer utiliza-
tion of each router in the VFIL In particular, this effect is
not present in the single router VFI configurations where
the DFS is faster than DVES to react, even if negligible

Figure 11 Total power, i.e.
static, dynamic and clock power,

considering 8 MiBench 12

B DFS-FIFO mDVFS-FIFO

B DFS-FIFO EDVFS-FIFO

DFS-2x2-FIFO mDVFS-2x2-FIFO

1
0.9
0.85
0.8
0.75

susan gsort

search dijkstra bitcount basicmath

improvement are reported. On the other hand, increasing
the VFI size imposes a frequency update based on the aver-
age buffer occupancy of the buffers in all the router inside
the considered VFI. This degrades the reaction of the pol-
icy, as showed in the results where for each benchmark the
use of single router VFIs always overcome the architectures
with VFIs of 4 routers. Such performance reduction is inde-
pendent of the used actuator, i.e. DFS and DVFS, and it is
10.45% in average.

Both sha and bitcount show comparable performance
regardless the VFI size and the use of DVFS or DFS.
However, from the analysis of the results an almost flat
interconnect utilization is observed. Hence the policy has
no reasons to frequently change the frequency, so that both
power and performance overheads are limited.

Power consumption is also greatly affected by the
exploited mechanism, i.e. DFS or DVFS, and the orga-
nization of the VFIs. The DVFS greatly impacts power
reduction, since both frequency and voltage are controlled.
Considering single router VFI scenarios, DVFS overcomes
the power reduction obtained by DFS of up to 22.45%.
Besides the same behaviour between DVFS and DEFS is
observed even when 2x2 VFIs are used.

Surprisingly, the power consumption of the DVFS and
DFS, where single router VFIs are used for the first and
2x2 VFIs are used for the latter, are similar. In particular,
we assumed 2.5mW worst case power consumption for the
voltage regulator as extracted from SPICE simulations of
a commercial device [16]. However, the FIFO buffer dis-
tribution in the NoC also impacts the total power. To this

DFS-2x2-FIFO mDVFS-2x2-FIFO

applications on a 16 cores 1
architecture with a 4x4 2D-mesh 0.8
NoC. Results are normalized per '
benchmark. 0.6
0.4
0.2

o

hello

susan

gsort sh search dijkstra bitcount basicmath
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Table 4 Four explored configurations combining DFS or DVFS, with
the size of the VFI. VFI contains 1 or 4 router. The latter organizes
routers in 2x2 topology.

DFS DVES

DFS-FIFO
DFS-2x2-FIFO

DVFES-FIFO
DVFS-2x2-FIFO

single router VFI
2x2 VFI

extent, we approximatively evaluated the power required by
a single FIFO buffer as the static power consumption of
the buffer of the same size, i.e. 6 slots, plus the dynamic
power obtained from its write and read statistics. Moreover,
we used both the voltage and frequency of the downstream
router to collect data considering the FIFO attached to the
downstream VFI [28].

The use of DVFS provides many advantages in term of
power reduction while negligible performance overheads
are introduced. On the other hand the use of bigger VFIs
contributes to lower the power yet again with a performance
degradation around 10%.

4.3 Run-time Optimization Policies

One of the most prominent uses of the presented frame-
work is to evaluate the quality of different DFS/DVFS
policies operating on NoC routers. In this perspective, this
section discusses a per router DFS-based and threshold-
based policy, used as an example to highlight the flexibility
of the proposed work. We present a simple policy that
can switch between three frequencies, i.e. HIGH=800MHz,
NORMAL=500MHz and LOW=250MHz depending on the

router load. The switch is managed using threshold values
on the congestion metric (C;) that is the per router used per-
formance metric, i.e. the number of flits stored in the input
ports of the considered router. In particular, the policy dis-
tinguishes between an high congestion threshold and a low
congestion threshold, HIGH-TH and LOW-TH respectively.
Last, we impose FREQ-CHANGE-LIMIT as the minimum
time between two frequency changes. At the beginning
of the simulation the frequency is set at S00MHz. Then,
the congestion values are sampled every 0.lus. However,
the policy can change the router frequency on a multiple
of the sampling period, i.e. E REQ'CIgﬁZZ ?E'UMIT. Figure 12
reports a timing diagram showing frequencies, dynamic
power and congestion levels for R5 on a 16-cores run-
ning the FFT MiBench. The HIGH-TH and LOW-TH are
set at 10 and 20 flits respectively, as highlighted by the
red lines in the congestion graph. The FREQ-CHANGE-
LIMIT is set at 10 times the sampling period, i.e. lus. This
means that the policy has to maintain the frequency con-
stant at least for lus regardless of the actual congestion
level.

Data reported in Fig. 12 highlight two aspects. First, the
threshold policy allows to reduce the router frequency at
low router load, thus reducing dynamic power consump-
tion. This is clear from Fig. 12 where the congestion level
is almost always below the HIGH-TH, thus the HIGH fre-
quency is used only when required. Moreover, the threshold
policy allows to reduce even further the power consump-
tion lowering the frequency at LOW in case of very low
traffic.

Second, the policy is not optimal, since in some cases the
HIGH frequency requirement due to high congestion is not
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Figure 12 Frequency, power and congestion traces sampled while running the described DFS policy.
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satisfied, thus the router performance decreases. For
example, around sample 780 the congestion has a peak
reaching a value close to 40 flits, while the policy cannot
increase the frequency that has been changed to LOW. In
this situation the congestion peak decreases due to the appli-
cation behaviour and remain under the LOW-TH value until
sample 800. However, the policy samples the congestion
value during the slope as an HIGH-TH thus the frequency
increases to HIGH without motivation, since congestion is
decreasing due to application behaviour. To this extent the
policy does not take the right choice in all cases, sometimes
wasting power without a performance improvement. How-
ever, even if the proposed policy is not optimal, it allows to
show how the presented framework can help to assess run-
time power-performance optimization procedures focusing
on the limits of the procedures themselves, while the frame-
work provides information on power, performance and
timing at the same time.

4.4 Resynchronization Schemes

This section explores the impact on performance of differ-
ent resynchronization schemes with respect to a non-GALS
NoC. In particular, three different scenarios are analyzed,
i.e. Base NoC, Handshake and a six slot deep FIFO resyn-
chronizer called FIFO-6. Each configuration has been tested
using multiple benchmarks from the MiBench suite. Every
scenario has the frequency of the NoC fixed at IGHz, while
both Handshake and FIFO-6 assume each router as a VFL.
Handshake and FIFO resynchronizers are thus present. Fur-
thermore, the frequency for all the simulations is fixed
to allow a consistent comparison between the three archi-
tectures. Table 5 reports the performance results, as total
execution time normalized to the Base NoC time. Lower
values means faster simulations while higher ones high-
light a performance penalty with respect to the Base NoC.
Results point out the better performance achieved by the
FIFO-6 resynchronizer with respect to the Handshake one
in all the simulation benchmarks. Moreover, FIFO-6 can
perform up to 13.38 times better than the Handshake, as

Table 5 Performance analysis comparing FIFO-6 and Handshake
resynchronization schemes keeping the frequency fixed against the
baseline NoC without GALS support. Timing results are normal-
ized with respect the Base NoC without GALS support to isolate the
performance overhead due to a specific resynchronization scheme.

Resynch ~ Susan Qsort Sha Search Dijkstra Bitcnts Basicmath

Base NoC
(No GALS)
Handshake 1.27 2.15 13.38 1.79 1.33 1.01  1.31
FIFO-6 1.04 1.16 1.00 1.11 1.06 1.00  1.05

1 1 1 1 1

reported for the sha application. All in all, the FIFO-6
introduces a limited performance overhead with respect to
the Base NoC without GALS support, providing an aver-
age 6% performance penalty. In summary, the FIFO-6 can
be exploited to support the DVFS mechanisms if a low
performance penalty is required. The Handshake resyn-
chronizer is instead preferable when minimizing area and
reducing leakage are the main design drivers, as it does not
require buffers and only consists of a few logic gates and
flip-flops.

4.5 Simulation Overhead

This part details the simulation time overhead that the pre-
sented models introduce with respect to the baseline GEMS5
implementation. A 6-core Xeon-v2 with core frequency up
to 2.93GHz and 16 GB of RAM was used for all the sim-
ulations in the rest of this section. Several scenarios are
examined considering different frequency island sizes with
1, 2, 4, 8, 16 routers. Then, we changed the frequency of
a single island and collected the time required to change
the island frequency. Results are reported in Table 6. It is
interesting to note that the absolute time required to per-
form one single frequency change is below one millisecond,
thus it is negligible compared to the usual time required to
perform an entire simulation. Considering the 4x4 2D-mesh
architecture whose architectural parameters are provided in
Table 3, the hello,o0orld benchmark takes around 30 sec-
onds to be completed without using the DVFS, while small
timing overheads for the DVFS are reported in Table 5 for a
single frequency change.

The PLL model, as expected, requires more time as it
implies multiple individual frequency changes, but as shown
in Section 3.1, it is possible to trade off accuracy for speed.
The time required to move events decreases with the size
of the frequency island. This was expected, since the num-
ber of events is bound to the number of components in
the frequency island. Moreover, the reported data high-
lights the quasi-linearity of the time required to move the
events of a frequency island in response of a frequency
change.

Contrary to the frequency change overhead, which only
stretches the simulated time (and simulation time as well,

Table 6 Timing overhead (in microseconds) for performing a fre-
quency change depending on frequency island sizes and change
model.

Island size 16 8 4 2 1
Single change 749 395 201 89 43
Fast PLL 5969 3666 1918 997 470
Detailed PLL 71529 42916 24626 12186 5249
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as shown above) without altering the number of clock
cycles to execute a given benchmark, the overhead of the
resynchronizers results in the introduction of additional
clock cycles in the simulation. The exact number, how-
ever, depends on the frequency and phase of the two clock
domains among which the resynchronizer is connected,
which changes throughout the simulation when DFS poli-
cies are active.

5 Conclusions

This paper presented a novel simulation framework avail-
able in [14] to support the exploration and optimization
of the power and performance metrics in the NoC. Fur-
thermore, it accounts for accurate DVFS, DFS and GALS
mechanisms encompassing their power and performance
overheads. Such overheads are integrated and added to the
timing and power consumption of the architectural simu-
lated components, thus providing a measure of the actuator
impact as well as a real benefit for each methodology that
exploits DVFS mechanisms and GALS paradigm.

Results discussed in Section 4 highlight the great impact
different hardware models can have on the overall simula-
tion results. For example, the use of a FIFO in spite of an
handshake resynchronization circuit can degrade the multi-
core performance up to 13 times. To this extent, it is of
paramount importance to use a simulation flow like the one
proposed in this work to prevent a possible overestimation
of the benefit of the proposed methodologies.

The simulation flow allows to easily validate DVFS
based policies ensuring accurate results. In this scenario, our
proposal represents the first, to the best of our knowledge,
comprehensive full system simulation flow that allows to
validate novel microarchitectural solutions also exploiting
actuators, focusing on the NoC.

Last, the extendibility represents an additional key fea-
ture of the presented work, since DVFS models can be
adapted to the CPUs, while resynchronization schemes can
be optimized starting from the provided models for each of
the most representative families, i.e. FIFO and handshake.
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